Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information (ESI)

One-step green synthesis of carbon dots derived from Plumeria alba flowers

for sensing and bioimaging

Ye He,^{a,b,†,*} Xiaojing Chen,^{a,b,†} Panlin Wang,^{a,b} Xiao Li,^{a,b} Bingbing Wang,^{a,b} Xiaomeng Wang,^{a,b}

Zhuzheng Wu^{a,b} and Wenxiang Wang^{a,b,*}

^aDepartment of Health Inspection and Quarantine, School of Public Health, Fujian Medical University,

Fuzhou, Fujian, China.

^bFujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical

University, Fuzhou, Fujian, China.

* Corresponding author. Tel.: +86-59122862023; Fax: +86-59122862023.

E-mail address: wangwenxiang@fjmu.edu.cn (W. Wang). heye@fjmu.edu.cn (Y. He).

[†] Authors contributed equally to this work.

The elucidation of the static quenching mechanism for detection of Cu^{2+} :

It is well known that nitrogen atoms have the ability to coordinate with copper ions¹. As illustrated in Fig. 2, there exists amino moieties on the BpaCDs. The amino moieties on the B-paCDs may play a role in the recognition and detection of copper ions. The possible sensing mechanism is that the coordination between Cu²⁺ and the amino moieties on the BpaCDs inducing the formation of complex. After complexation, electrons from the conduction band are transferred to the empty d-orbitals of Cu^{2+} , causing fluorescence quenching². To further elucidate the mechanism of fluorescence quenching, the UV-vis spectra of B-paCDs, B-paCDs+Cu²⁺ and Cu²⁺ were carried out. As shown in the Fig. S3a significant decrease in absorption intensity is observed on the UV-vis spectra after adding Cu²⁺ (100 µM) into B-paCDs solutions, hinting that a static quenching mechanism has occurred³. Moreover, fluorescence lifetimes of B-paCDs before and after adding Cu^{2+} (100 μ M) were measured to ascertain the mechanism. In Fig. S3b, the fluorescence lifetime of the B-paCDs is 6.64ns. The lifetime decreased to 6.63 ns after adding Cu^{2+} (100 µM) into the solution of B-paCDs. The nearly identical fluorescence lifetimes proves that it is static quenching⁴.

Figures

Fig. S1 UV–vis absorption, fluorescence excitation and emission spectra of the ammonia water (a) and NaOH water (b) containing dried *Plumeria alba* flower (without heating, after 6 h), respectively. PL spectra of the ammonia water (c) containing dried *Plumeria alba* flower (with or without heating, after 6 h) and NaOH water (d) containing dried *Plumeria alba* flower (with or without heating, after 6 h), respectively.

Fig. S2 Effects of different reaction temperatures (a) and reaction times (b) on the fluorescence intensity of B-paCDs. Effects of different reaction temperatures (c) and reaction times (d) on the fluorescence intensity of G-paCDs.

Fig. S3 UV–vis spectra of B-paCDs, B-paCDs+ Cu^{2+} and Cu^{2+} (a). The fluorescence lifetimes of B-paCDs before and after adding Cu^{2+} (b).

Fig. S4 Dose–response curve for the FL intensity of B-paCDs with pH.

Fig. S5 Cell viabilities of HepG2 cells with different concentrations of B-paCDs (a) and G-paCDs (b).

Fig. S6 Toxicity experiments of *C. elegans* incubated with different concentrations of the B-paCDs (a) and G-paCDs (b).

Tables

Fluorescent probes	Raw material	Linear range	Detection limit	Ref.
CQDs	Rambutan and Pandan leaves	-	123.67 μM	5
OPD-CDs	o-phenylenediamine	0.5 μM - 40 μM	0.28 µM	6
N-CDs	polyethylene glycol 20,000 and p-phenylenediamine	45-70 μM	45.87 μM	7
BTSC-CDs	EDTA	0.20–30 µM	0.27 μΜ	8
B,N-CDs	APBA	1–25 µM	0.3 μΜ	9
CDs-Cl,P	sucrose, muriatic acid and phosphoric acid	5 μΜ - 100 μΜ	0.14 μΜ	10
N.S-CDs	CA and TSC	5-125 μM	1.326 µM	11
h-CDs	o-phenylenediamine and terephthalic acid	0-10 μM	0.18 μΜ	12
NECDs	citric acid, polyoxyethylene bis(amine), polyvinyl polyamine and norepinephrine	0.1-10 μM	0.18 μΜ	13
N-CDs	Ascorbic acid and urea	-	0.15 μM	14
CDs	radish	10-60 μM	6.8 µM	15
FCDs	peanut shells	0-5µM	4.8 μΜ	16
C-dots	coconut water and ethanol	10 - 50 μM	0.28 µM	17
BPEI-CQDs	bamboo leaves	0.333-5.66 μM	0.115 μΜ	18
G-CDs	Spirulina algae powder	0 - 45 μM	3.5 µM	19
B-paCDs	Plumeria alba flowers	0.1 -100 μM	0.08 μΜ	This work

Table S1 Comparison of different green synthetic CDs for detection of Cu^{2+} .

References

- 1. Z. Fu, J. He, Y. Li, H. Ding, X. Gao, F. J. S. A. P. A. M. Cui and B. Spectroscopy, 2023, **287**, 122052.
- 2. P. Shasha, J. H. Kim, S. J. J. J. o. n. Park and nanotechnology, 2019, **19**, 6077-6082.
- 3. S. Huang, L. Wang, C. Huang, J. Xie, W. Su, J. Sheng, Q. J. S. Xiao and A. B. Chemical, 2015, **221**, 1215-1222.
- 4. S. Liao, X. Huang, H. Yang, X. J. A. Chen and b. chemistry, 2018, **410**, 7701-7710.
- 5. L. D. Kasmiarno, A. Fikarda, R. K. Gunawan, I. Isnaeni, S. Supandi and N. S. J. C. Sambudi, 2021, **9**.
- 6. W. Lv, M. Lin, R. Li, Q. Zhang, H. Liu, J. Wang and C. Huang, *Chinese Chemical Letters*, 2019, **30**, 1410-1414.
- 7. H. Zhao, R. Li, Y. Wang, Z. Zhao and S. Shuang, *Journal of Photochemistry and Photobiology A: Chemistry*, 2023, **439**.
- 8. Z. Fu, J. He, Y. Li, H. Ding, X. Gao and F. Cui, *Spectrochim Acta A Mol Biomol Spectrosc*, 2023, **287**, 122052.
- M.-C. Rong, K.-X. Zhang, Y.-R. Wang and X. Chen, *Chinese Chemical Letters*, 2017, 28, 1119-1124.
- 10. Y. Yang, Y. Jiang, X. Wang and S. Han, *Spectrochim Acta A Mol Biomol Spectrosc*, 2022, **279**, 121434.
- 11. S. F. El-Malla, E. A. Elshenawy, S. F. Hammad and F. R. Mansour, *Anal Chim Acta*, 2022, **1197**, 339491.
- 12. C. Yu, D. Zhang, Q. Zhu, D. Chao, H. Liu and L. Zhou, *Dyes and Pigments*, 2022, **198**.
- 13. X. Chen, Y. Zhuang, J. Chen, J. Lin, J. Chen and Z. Han, *Microchemical Journal*, 2022, **181**.
- 14. M. Bhatt, S. Bhatt, G. Vyas, I. H. Raval, S. Haldar and P. Paul, *ACS Applied Nano Materials*, 2020, **3**, 7096-7104.
- 15. J. Praneerad, N. Thongsai, P. Supchocksoonthorn, S. Kladsomboon and P. Paoprasert, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2019, **211**, 59-70.
- 16. X. Ma, Y. Dong, H. Sun and N. Chen, *Materials Today Chemistry*, 2017, **5**, 1-10.
- 17. R. Purbia and S. Paria, *Biosens Bioelectron*, 2016, 79, 467-475.
- 18. Y. Liu, Y. Zhao and Y. Zhang, *Sensors and Actuators B: Chemical*, 2014, **196**, 647-652.
- 19. E. Emami and M. H. Mousazadeh, *Journal of Photochemistry and Photobiology* A: Chemistry, 2021, **418**.