Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Hydrosilylative Reduction of Secondary Amides to Amines Catalyzed

by Geometric-Constrained NNN-Cobalt Complexes

Table of Contents

- 1. X-ray analysis of Co-3
- 2. Optimization of reaction conditions.
- 3. Procedure for gram scale reaction
- 4. Kinetic experiments.
- 5. Spectra of products
- 6. References

1. X-ray analysis of Co-3

Figure S1. Solid structure of complex Co-3. Hydrogen atoms were emitted for clarity.

Table S1. Crystal data and structure refinement for Complex Co-3.

a_a	
$C_{20}H_{25}Cl_2CoN_3$	
437.26	
193(2) K	
1.34139 Å	
Orthorhombic	
P212121	
a = 11.1324(3) Å	α= 90 °.
b = 11.1382(3) Å	$\beta = 90$ °.
c = 16.7579(5) Å	$\gamma = 90$ °.
2077.89(10) Å ³	
4	
1.398 Mg/m ³	
6.145 mm ⁻¹	
908	
0.180 x 0.160 x 0.160 mm	n ³
4.146 to 53.950 °.	
-13<=h<=13, -13<=k<=13	3, -20<=l<=20
25981	
3799 [R(int) = 0.0623]	
100.0 %	
None	
Full-matrix least-squares	on F ²
	a_a C ₂₀ H ₂₅ Cl ₂ CoN ₃ 437.26 193(2) K 1.34139 Å Orthorhombic P2 ₁ 2 ₁ 2 ₁ a = 11.1324(3) Å b = 11.1382(3) Å c = 16.7579(5) Å 2077.89(10) Å ³ 4 1.398 Mg/m ³ 6.145 mm ⁻¹ 908 0.180 x 0.160 x 0.160 mm 4.146 to 53.950 °. -13<=h<=13, -13<=k<=13 25981 3799 [R(int) = 0.0623] 100.0 % None Full-matrix least-squares of

Data / restraints / parameters	3799 / 0 / 238
Goodness-of-fit on F ²	0.913
Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	R1 = 0.0289, wR2 = 0.0660 R1 = 0.0362, wR2 = 0.0688 0.030(7) n/a
Largest diff. peak and hole	0.264 and -0.247 e.Å ⁻³

Table S2. Bond lengths [Å] and angles [] for Ni1.				
selected be	ond lengths [Å]	selected ang	gles [°]	
Co(1)-Cl(1)	2.2644(10)	N(2)-Co(1)-N(1)	74.83(11)	
Co(1)– $Cl(2)$	2.2673(11)	N(2)-Co(1)-Cl(1)	126.94(9)	
Co(1) - N(1)	2.241(3)	N(1)-Co(1)-Cl(1)	90.34(8)	
Co(1)-N(2)	2.030(3)	N(2)-Co(1)-Cl(2)	110.22(9)	
Co(1)-N(3)	2.281(3)	N(1)-Co(1)-Cl(2)	100.16(8)	
		Cl(1)-Co(1)-Cl(2)	122.58(4)	
		N(2)-Co(1)-N(3)	77.74(12)	
		N(1)-Co(1)-N(3)	151.42(11)	
		Cl(1)-Co(1)-N(3)	99.82(8)	
		Cl(2)-Co(1)-N(3)	96.69(9)	

2. Optimizations for Co-catalyzed hydrosilylative reduction of amide.

Table S3. The effects of various silanes.

0 L 1a	N + silane — H	[Co-3], NaBEt ₃ H DME,100 °C, 6h	N H 2a
Entry	Silane	Conv. (%)	Yield $(\%)^b$
1	PhSiH ₃	100	80
2	Ph_2SiH_2	55	52
3	Et ₃ SiH	n.r.	0
4	(EtO) ₃ SiH	16	12
5	(MeO) ₃ SiH	n.r.	0

^{*a*} Reaction conditions: **1a** (1.0 mmol), silane (3.0 mmol), cat (2 mol%), NaBEt₃H (10 mol%), Solvent (2 mL) at 100 °C, 6 h. ^{*b*} Conversions were obtained with GC area normalization. ^{*c*} Yields were obtained with GC analysis using biphenyl as an internal standard.

Table S4. The effects of temperature, catalyst loading, the reaction time, and the amount of PMHS

	O	`N + [Si-H] −	[Co-3], NaBEt ₃ H DME,100 ^o C, 6h		
	1a			2a	
Entry	Temp. (°C)	Cat. (mol%)	Time (h)	[Si-H] (eq.)	Yield $(\%)^b$
1	80	Co-3 (2)	6	10	73
2	90	Co-3 (2)	6	10	81
3	100	Co-3 (2)	6	10	89
4	110	Co-3 (2)	6	10	84
5	120	Co-3 (2)	6	10	76
6	100	Co-3 (1)	6	10	77
7	100	Co-3 (2)	6	10	87
8	100	Co-3 (3)	6	10	90
9	100	Co-3 (4)	6	10	91
10	100	Co-3 (5)	6	10	93

11	100	Co-3 (2)	4	10	48
12	100	Co-3 (2)	5	10	67
13	100	Co-3 (2)	6	10	85
14	100	Co-3 (2)	7	10	82
15	100	Co-3 (2)	8	10	70
16	100	Co-3 (2)	6	3	36
17	100	Co-3 (2)	6	6	46

^a Reaction conditions: **1a** (1.0 mmol), PMHS (3-10 mmol Si-H), cat (1-5mol%), NaBEt₃H (10 mol%), Solvent (2 mL) at 80-120 °C, 4-8 h. ^b Yields were obtained with GC analysis using biphenyl as an internal standard.

3. Procedure for gram scale reaction

To a Young tube, was charged with **Co-3** (44 mg, 0.1 mmol), **10** (1.0 g, 5 mmol), PMHS (3.4 mL), DME (10.0 mL) and NaHBEt₃ (0.5 mL, 0.5 mmol). The mixture was stirred at 100 °C for 6 h, the reaction temperature was allowed to cool to room temperature. The reaction was diluted with DCM, and then aqueous sodium hydroxide was added and stirred at room temperature for 1 h. After extraction and concentration, The residue was then purified by flash column chromatography using petroleum ether as eluent to afford **20** (784 mg, 83%) as a yellow oil.

4. Kinetic experiments.

4.1 Kinetic investigation for the reduction of 10

To a Young tube was charged with **Co-3** (4.4 mg, 0.01 mmol), **10** (102 mg, 0.5 mmol), PMHS (340 μ L), DME (1.0 mL) and NaHBEt₃ (50 μ L, 0.05 mmol). The mixture was stirred at 100 °C for the designed reaction time (see Tab S3). Then,

the reaction temperature was allowed to cool to room temperature. The reaction was diluted with DCM, and then aqueous sodium hydroxide was added and stirred at room temperature for 1 h. The amount of **1o** and **2o** were obtained with n-dodecane as the internal standard as shown in the table below. **Table S5.** Kinetic data for the reduction of **1o**.

Entry	Time/min	10 (mmol)	20 (mmol)
1	0	0.5	0
2	60	0.315	0.077
3	120	0.185	0.155
4	180	0.125	0.240
5	240	0.1	0.310
6	300	0.035	0.4
7	360	0.035	0.430

4.2 Kinetic investigation for the reduction of 2o'

To a Young tube was charged with **Co-3** (4.4 mg, 0.01 mmol), **2o'** (94 mg, 0.5 mmol), PMHS (340 μ L), DME (1.0 mL) and NaHBEt₃ (50 μ L, 0.05 mmol). The mixture was stirred at 100 °C for the designed reaction time (see Tab S6). Then, the reaction temperature was allowed to cool to room temperature. The reaction was diluted with DCM, and then aqueous sodium hydroxide was added and stirred at room temperature for 1 h. The amount of **2o'** and **2o** were obtained with n-dodecane as the internal standard as shown in the table below

Table S6. Kinetic data for for the reduction of 20'.

Entry	Time/min	20' (mmol)	20 (mmol)
1	0	0.5	0

2	5	0.380	0.110
3	10	0.260	0.220
4	25	0.150	0.325
5	35	0.060	0.410
6	75	0.015	0.450
7	120	0.010	0.455
8	240	0.005	0.460
9	360	0.005	0.460

Figure S2. Kinetic diagram for the reduction of 20 and 20'

5. Spectra of products

N-methyl-1-phenylmethanamine (2a)¹: The title compound was purified by column chromatography (PE) to afford the product as a yellow oil (131 mg, 88% yield). ¹H NMR (600 MHz, DMSO-d6) δ 7.38 – 7.26 (m, 4H), 7.22 (t, *J* = 6.8 Hz, 1H), 3.64 (s, 2H), 2.67 (s, 2H). ¹³C NMR (150 MHz, DMSO-d6) δ 141.3, 128.5, 128.3, 126.9, 55.7, 36.1.

N-benzylpropan-1-amine (2b)¹: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (131 mg, 88% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.32 (m, 4H), 7.29-7.23 (m, 1H), 3.81 (s, 2H), 2.62 (t, *J* = 6.9 Hz, 2H), 1.60 – 1.50 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 140.6, 128.4, 128.1, 126.8, 54.0, 51.4, 23.2, 11.8.

N-benzylpropan-2-amine $(2c)^2$: The title compound was purified by column chromatography (PE:EA=1:1) to afford the product as a colorless oil (113 mg, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.31 (m, 4H), 7.28 – 7.24 (m, 1H), 3.80 (s, 2H), 2.88 (sep, *J* = 6.2 Hz, 1H), 1.11 (d, *J* = 6.2 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 140.7, 129.1, 128.4, 128.1, 126.8, 51.6, 48.1, 22.9.

N-benzyl-2-methylpropan-2-amine (2d)³: The title compound was purified by column chromatography (PE:EA=1:1) to afford the product as a colorless oil (144 mg, 88% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 7.34 (d, *J* = 7.6 Hz, 2H), 7.31-7.26 (m, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 3.65 (s, 2H), 1.10 (s, 9H). ¹³C NMR (125 MHz, DMSO- d_6) δ 142.6, 129.1, 128.4, 126.7, 50.6, 46.8, 29.4.

N-benzyl-1-cyclohexylmethanamine (2e)²: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (161 mg, 79% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.34–7.26 (m, 4H), 7.19 (t, *J* = 7.0 Hz, 1H), 3.66 (s, 2H), 2.30 (d, *J* = 6.6 Hz, 2H), 1.77–1.69 (m, 2H), 1.68–1.57 (m, 3H), 1.43–1.31 (m, 1H), 1.25–1.07 (m, 3H), 0.89–0.79 (m, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 141.7, 128.4, 128.2, 126.8, 56.0, 53.7, 38.1, 31.6, 26.8, 26.1.

N-(2-methylbenzyl)hexan-1-amine (2f)⁴: The title compound was purified by column chromatography (PE) to afford the product as a pale yellow oil (160 mg, 78% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.29–7.25 (m, 1H), 7.13–7.09 (m, 3H), 3.63 (s, 2H), 2.51 (t, *J* = 7.4 Hz, 2H), 2.27 (s, 3H), 1.47–1.39 (m, 2H), 1.33–1.18 (m, 6H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 138.9, 135.9, 129.7, 128.1, 126.3, 125.4, 50.9, 49.2, 31.3, 29.5, 26.6, 22.1, 18.5, 13.9.

N-(3-methylbenzyl)hexan-1-amine (2g)⁵: The title compound was purified by column chromatography (PE) to afford the product as a yellow oil (168 mg, 82% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 7.17 (t, *J* = 7.6 Hz, 1H), 7.12 (s, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 7.01 (d, *J* = 7.6 Hz, 1H), 3.62 (s, 2H), 2.45 (t, *J* = 7.3

Hz, 2H), 2.28 (s, 3H), 1.44–1.35 (m, 2H), 1.31-1.16 (m, 6H), 0.85 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 140.9, 137.0, 128.5, 127.9, 127.0, 124.9, 53.0, 48.7, 31.3, 29.4, 26.5, 22.1, 21.0, 13.9.

N-(**4-methylbenzyl**)hexan-1-amine (2h)⁵: The title compound was purified by column chromatography (PE:EA=50:1) to afford the product as a colorless oil (164 mg, 80% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.18 (d, *J* = 7.9 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 3.62 (s, 2H), 2.44 (t, *J* = 7.4 Hz, 2H), 2.27 (s, 3H), 1.43–1.37 (m, 2H), 1.29–1.21 (m, 6H), 0.85 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 138.5, 135.7, 129.0, 128.2, 53.3, 49.1, 31.8, 30.0, 27.0, 22.6, 21.1, 14.4.

N-(4-fluorobenzyl)hexan-1-amine (2i)⁵: The title compound was purified by column chromatography (PE:EA=50:1) to afford the product as a pale yellow oil (209 mg, 84% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.34 – 7.31 (m, 2H), 7.10 – 7.06 (m, 2H), 3.63 (s, 2H), 2.43 (t, *J* = 7.5 Hz, 2H), 1.40 – 1.38 (m, 2H), 1.27 – 1.20 (m, 6H), 0.85 – 0.82 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 161.5 (d, *J* = 241.4 Hz), 137.7 (d, *J* = 2.9 Hz), 130.0 (d, *J* = 8.1 Hz), 115.1 (d, *J* = 21.7 Hz), 52.7, 49.1, 31.8, 30.0, 27.0, 22.6, 14.3.

N-(4-(trifluoromethyl)benzyl)propan-1-amine (2j)⁶: The title compound was purified by column chromatography (PE) to afford the product as a pale yellow oil (191 mg, 88% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 7.64 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 3.75 (s, 2H), 2.42 (t, *J* = 7.1 Hz, 2H), 1.49–1.36

(m, 2H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 146.7, 128.9, 127.6 (q, J = 31.7 Hz), 125.3 (q, J = 3.6 Hz), 124.9 (q, J = 281.7 Hz, 1C), 52.9, 51.1, 23.1, 12.2.

$$\overset{H}{\swarrow}\overset{H}{\overset{N}{\underset{H}{\overset{n}{\overset{n}}}}}\overset{n}{\underset{H}{\overset{n}{\overset{n}}}}C_{6}H_{13}$$

N-(**furan-2-ylmethyl**)**hexan-1-amine** (**2k**)⁸: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (152 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.33 (dd, *J* = 1.8, 0.7 Hz, 1H), 6.29 (dd, *J* = 3.1, 1.8 Hz, 1H), 6.16 (d, *J* = 3.3 Hz, 1H), 3.76 (s, 2H), 2.58 (t, *J* = 7.3 Hz, 2H), 1.58-1.40 (m, 2H), 1.37–1.19 (m, 6H), 0.86 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 154.2, 141.6, 110.0, 106.6, 49.2, 46.3, 31.7, 30.0, 27.0, 22.6, 14.0.

N-(thiophen-2-ylmethyl)hexan-1-amine (2l)⁸: The title compound was purified by column chromatography (PE) to afford the product as a pale yellow oil (160 mg, 81% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.33 (dd, *J* = 4.7, 1.6 Hz, 1H), 6.95-6.90 (m, 2H), 3.85 (s, 2H), 2.49 (t, *J* = 7.2 Hz, 2H), 1.46–1.34 (m, 2H), 1.30–1.16 (m, 6H), 0.85 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ145.4, 126.4, 124.2, 124.2, 48.5, 47.8, 31.2, 29.4, 26.5, 22.1, 13.9.

N-benzylaniline (2m)⁶: The title compound was purified by column chromatography (PE:EA=5:1) to afford the product as a colorless oil (157 mg, 86% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 7.37 (d, *J* = 7.3 Hz, 2H), 7.34-7.29 (m, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.08-7.00 (m, 2H), 6.59 (d, *J* = 8.3 Hz, 2H), 6.52 (t, *J* = 7.3, 1H), 6.22 (t, *J* = 5.7 Hz, 1H), 4.27 (d, *J* = 6.0 Hz, 2H). ¹³C NMR

(125 MHz, DMSO-*d*₆) δ 149.2, 140.8, 129.3, 128.7, 127.6, 127.0, 116.2, 112.8, 47.0.

N-benzyl-2,6-dimethylaniline (2n)⁹: The title compound was purified by column chromatography (PE:EA=50:1) to afford the product as a colorless oil (114 mg, 54% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.36 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 7.26– 7.20 (m, 1H), 6.91 (d, *J*=7.6 Hz, 2H), 6.72 (t, *J*=7.6 Hz, 1H), 4.09 (s, 2H), 2.20 (s, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 146.3, 141.4, 129.8, 128.9, 128.6, 128.2, 127.2, 121.7, 51.8, 18.9.

N-ethylaniline (4a)¹: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (104 mg, 86% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.19–7.13 (m, 2H), 6.68 (t, *J* = 7.5 Hz, 1H), 6.58 (d, *J* = 8.8 Hz, 2H), 3.45 (br, 1H), 3.12 (q, *J* = 7.2 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 148.6, 129.3, 117.3, 112.8, 38.5, 15.0.

N-ethyl-4-methoxyaniline (4b)¹: The title compound was purified by column chromatography (PE:EA=5:1) to afford the product as a colorless oil (137 mg, 91% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.71 (d, *J* = 8.8 Hz, 2H), 6.53–6.51 (d, *J* = 8.8 Hz, 2H), 4.99 (br, 1H), 3.63 (s, 3H), 2.96 (q, *J* = 7.1 Hz, 2H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 151.1, 143.8, 115.0, 113.5, 55.8, 38.6, 15.0.

N-ethyl-4-fluoroaniline (4c)¹: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (114 mg, 82% yield). ¹H NMR (600 MHz, DMSO- d_6) δ 6.89 (t, *J* = 8.8 Hz, 2H), 6.52 (dd, *J* = 8.8, 4.6 Hz, 2H), 5.39 (br, 1H), 2.97 (q, *J* = 7.3 Hz, 2H), 1.14 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 154.5 (d, *J* = 230.8 Hz, 1C), 146.2, 115.6 (d, *J* = 22.2 Hz, 2C), 113.1 (d, *J* = 7.5 Hz, 2C), 38.3, 14.8.

4-bromo-N-ethylaniline $(4d)^{1}$: The title compound was purified by column chromatography (PE) to afford the product as a yellow oil (141 mg, 71% yield). ¹H NMR (600 MHz, DMSO-*d*₆) δ 7.18 (d, *J* = 8.7 Hz, 2H), 6.49 (d, *J* = 8.7 Hz, 2H), 5.73 (t, *J* = 4.7 Hz, 1H), 2.98 (q, *J* = 7.1 Hz, 2H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 148.6, 131.8, 114.2, 106.4, 37.7, 14.7.

N-ethylnaphthalen-1-amine (4e)¹⁰: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (154 mg, 90% yield). ¹H NMR (600 MHz, DMSO- d_6) δ 8.16 (d, *J* = 8.1 Hz, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.27 (t, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 8.1 Hz, 1H), 6.48 (d, *J* = 7.8 Hz, 1H), 6.04 (br, 1H), 3.22 (q, *J* = 6.5 Hz, 2H), 1.29 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 144.6, 134.5, 128.4, 127.3, 126.0, 124.3, 123.5, 122.2, 115.7, 103.3, 38.1, 14.6.

2,6-dimethyl-N-propylaniline (**4f**)¹¹: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (101 mg, 62% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.91 (d, *J* = 7.5 Hz, 2H), 6.70 (t, *J*

= 7.5 Hz, 1H), 2,86 (t, J = 7.6 Hz, 2H), 2.21 (s, 6H),1.54 – 1.44 (m, 2H), 0.9 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, DMSO- d_6) δ 146.9, 129.3, 128.9, 121.3, 50.1, 24.1, 18.9, 12.0.

N-isobutyl-2,6-dimethylaniline $(4g)^{12}$: The title compound was purified by column chromatography (PE) to afford the product as a pale yellow oil (106 mg, 60% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.91 (d, *J* = 7.4 Hz, 2H), 6.70 (t, *J* = 7.4 Hz, 1H), 3.61 (br, 1H), 2.71 (d, *J* = 6.6 Hz, 2H), 2.22 (s, 6H), 1.79 – 1.71 (m, 1H), 0.94 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 146.9, 129.3, 128.9, 121.3, 56.1, 29.4, 20.8, 18.8.

N-benzylethanamine (4h)¹¹: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (110 mg, 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.35-7.28 (m, 4H), 7.26-7.21 (m,1H), 3.78 (s, 2H), 2.67 (q, *J* = 7.2 Hz, 2H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 140.6, 128.4, 128.2, 126.9, 54.0, 43.7, 15.3.

N-benzylhexan-1-amine (4i)²: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (158 mg, 83% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.33-7.30 (m, 4H), 7.26–7.22 (m, 1H), 3.78 (s, 2H), 2.62 (t, *J* = 7.4 Hz, 2H), 1.55-1.45 (m, 2H), 1.35–1.23 (m, 6H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 140.6, 128.5, 128.2, 127.0, 54.2, 49.6, 31.9, 30.2, 27.2, 22.8, 14.2.

N-benzyl-1-cyclohexylmethanamine (4j)²: The title compound was purified by column chromatography (PE) to afford the product as a yellow oil (102 mg, 85% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.34–7.26 (m, 4H), 7.23–7.17 (m, 1H), 3.67 (s, 2H), 2.31 (d, *J* = 6.6 Hz, 2H), 1.78–1.70 (m, 2H), 1.68–1.57 (m, 3H), 1.42–1.32 (m, 1H), 1.24–1.08 (m, 3H), 0.89–0.79 (m, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 141.7, 128.4, 128.2, 126.8, 56.0, 53.7, 38.1, 31.6, 26.8, 26.1.

N-benzyl-2,2-dimethylpropan-1-amine (4k)²: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (134 mg, 76% yield). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.36–7.25 (m, 4H), 7.24-7.16 (m, 1H), 3.70 (s, 2H), 2.20 (s, 2H), 0.86 (s, 9H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 141.8, 128.5, 128.2, 126.8, 61.4, 54.3, 31.9, 28.2.

N-phenethylpropan-1-amine (4l)¹³: The title compound was purified by column chromatography (PE:EA=5:1) to afford the product as a pale yellow oil (148 mg, 91% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.31–7.28 (m, 2H), 7.22–7.19 (m, 3H), 2.87 (t, J = 7.3 Hz, 2H), 2.81 (t, J = 7.3 Hz, 2H), 2.58 (t, J = 7.3 Hz, 2H), 1.53-1.43 (m, 2H), 0.89 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 140.2, 128.8, 128.6, 126.2, 51.8, 51.2, 36.5, 23.2, 11.8.

N-ethyl-1-phenylethan-1-amine (4m)¹⁴: The title compound was purified by column chromatography (PE:EA=30:1) to afford the product as a yellow oil (119 mg, 80% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 7.34–7.23 (m, 4H), 7.22-7.14 (m, 1H), 3.66 (q, *J* = 7.1 Hz, 1H), 2.39–2.24 (m, 2H), 1.21 (d, *J* = 6.6 Hz, 3H),

0.96 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 146.9, 128.6, 126.9, 126.8, 58.0, 41.8, 25.0, 15.6.

N-(cyclohexylmethyl)hexan-1-amine (4n)¹⁵: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (185 mg, 94% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 2.43 (t, *J* = 7.0 Hz, 2H), 2.30 (d, *J* = 6.6 Hz, 2H), 1.73–1.58 (m, 5H), 1.39–1.10 (m, 15H), 0.85 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 56.9, 50.2, 38.1, 31.8, 31.6, 30.1, 27.0, 26.8, 26.1, 22.6, 14.4.

N-hexylcyclohexanamine $(40)^2$: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (144 mg, 79% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 2.48 (t, *J* = 6.9 Hz, 2H), 2.33–2.26 (m, 1H), 1.82–1.73 (m, 2H), 1.67–1.61 (m, 2H), 1.56–1.50 (m, 1H), 1.37–1.32 (m, 2H), 1.29–1.10 (m, 10H), 1.00–0.92 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 56.7, 46.9, 33.5, 31.8, 30.5, 27.1, 26.4, 24.9, 22.6, 14.4.

N-methylaniline $(4p)^{1}$: The title compound was purified by column chromatography (PE) to afford the product as a yellow oil (92 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 8.0 Hz, 2H), 6.82 (t, *J* = 7.3 Hz, 1H), 6.71 (d, *J* = 8.0 Hz, 2H), 3.71 (br, 1H), 2.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 129.3, 117.3, 112.5, 30.8.

N-methylcyclohexanamine $(4q)^{16}$: The title compound was purified by column chromatography (PE) to afford the product as a yellow oil (101 mg, 90% yield).

¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H),2.30 – 2.23 (m, 1H), 1.87 – 1.83 (m, 2H), 1.71 – 1.67 (m, 2H), 1.60 – 1.55 (m, 1H), 1.29 – 1.09 (m, 3H), 1.04 – 0.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 58.5, 33.6, 33.2, 26.2, 25.0.

1,2,3,4-tetrahydroquinoline (**6b**)¹⁷: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (106 mg, 80% yield). ¹H NMR (500 MHz, DMSO-*d*₆) δ 6.85-6.77 (m, 2H), 6.46–6.34 (m, 2H), 5.59 (br, 1H), 3.16 (t, *J* = 5.5 Hz, 2H), 2.64 (t, *J* = 6.3 Hz, 2H), 1.82–1.73 (m, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 145.8, 129.4, 126.8, 120.3, 115.5, 113.8, 41.3, 27.2, 22.0.

2,3,4,5-tetrahydro-1H-benzo[b]azepine (**6d**)¹⁸: The title compound was purified by column chromatography (PE) to afford the product as a colorless oil (117 mg, 80% yield). ¹H NMR (500 MHz, DMSO- d_6) δ 7.00 (d, J = 7.8 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 7.8, 1H), 6.66 (d, J = 7.4 Hz, 1H), 5.16 (br, 1H), 2.89 (t, J = 4.5 Hz, 2H), 2.65-2.60 (m, 2H), 1.72–1.61 (m, 2H), 1.58–1.49 (m, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 151.3, 132.2, 130.3, 126.2, 119.3, 118.9, 47.6, 35.4, 31.5, 26.7.

Azacyclotridecane(6e)¹⁰: The title compound was purified by column chromatography (EA) to afford the product as a yellow solid (150 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 2.87 (t, *J* = 6.5 Hz, 4H), 1.77-1.58 (m, 4H), 1.51-1.16 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 44.1, 25.5, 25.3, 25.1, 24.1, 23.5.

- 2.27

— 3.64

Figure S4. ¹³C NMR (150 MHz) spectrum of 2a in CDCl₃

Figure S6. ¹³C NMR (125 MHz) spectrum of **2b** in CDCl₃

Figure S8. ¹³C NMR (125 MHz) spectrum of 2c in CDCl₃

Figure S10. ¹³C NMR (125 MHz) spectrum of 2d in DMSO-d6

Figure S12. ¹³C NMR (125 MHz) spectrum of 2ed in DMSO-d6

Figure S14. ¹³C NMR (125 MHz) spectrum of 2f in DMSO-d6

Figure S16. ¹³C NMR (125 MHz) spectrum of 2g in DMSO-d6

Figure S18. ¹³C NMR (125 MHz) spectrum of 2h in DMSO-d6

Figure S20. ¹³C NMR (125 MHz) spectrum of 2i in DMSO-d6

Figure S22. ¹³C NMR (125 MHz) spectrum of 2j in DMSO-d6

Figure S24 ¹³C NMR (125 MHz) spectrum of 2k in CDCl₃

Figure S26 ¹³C NMR (125 MHz) spectrum of **2l** in DMSO-d6

Figure S28 ¹³C NMR (125 MHz) spectrum of **2m** in DMSO-d6

Figure S30 ¹³C NMR (125 MHz) spectrum of **2n** in DMSO-d6

Figure S32 ¹³C NMR (150 MHz) spectrum of 4a in CDCl₃

Figure S34 ¹³C NMR (125 MHz) spectrum of 4b in DMSO-d6

N-ethyl-4-fluoroaniline (4c)

Figure S36 ¹³C NMR (150 MHz) spectrum of 4c in DMSO-d6

4-bromo-N-ethylaniline (4d)

Figure S38 ¹³C NMR (150 MHz) spectrum of 4d in DMSO-d6

N-ethylnaphthalen-1-amine (4e)

Figure S40 ¹³C NMR (150 MHz) spectrum of 4d in DMSO-d6

2,6-dimethyl-N-propylaniline (4f)

Figure S42 ¹³C NMR (125 MHz) spectrum of **4f** in DMSO-*d*6

Figure S44 ¹³C NMR (125 MHz) spectrum of 4g in DMSO-d6

N-benzylethanamine (4h)

Figure S46 ^{13}C NMR (150 MHz) spectrum of 4h in CDCl_3

Figure S47. ¹H NMR (600 MHz) spectrum of 4i in CDCl₃

Figure S48 ¹³C NMR (150 MHz) spectrum of 4i in CDCl₃

Figure S50 13 C NMR (125 MHz) spectrum of **4j** in DMSO-d6

Figure S51. ¹H NMR (400 MHz) spectrum of 4k in DMSO-d6

Figure S52 ¹³C NMR (100 MHz) spectrum of 4k in DMSO-d6

Figure S54 ¹³C NMR (150 MHz) spectrum of 4l in CDCl₃

Figure S56 ¹³C NMR (125 MHz) spectrum of **4m** in DMSO-d6

N-(cyclohexylmethyl)hexan-1-amine (4n)

29 29 29 29 29 29	832 225 233 335 833 835 835 835 835 835 835 835 8
NNNN	
\sim	

Figure S58 ¹³C NMR (125 MHz) spectrum of **4n** in DMSO-*d*6

N-hexylcyclohexanamine (40)

Figure S61 ¹³C NMR (125 MHz) spectrum of 40 in DMSO-d6

Figure S62 ^{13}C NMR (100 MHz) spectrum of 4p in CDCl_3

Figure S64 ^{13}C NMR (100 MHz) spectrum of 4q in CDCl_3

1,2,3,4-tetrahydroquinoline (6b)

6.84 6.83 6.82 6.82 6.81 6.81 6.79 6.79	0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$\left\{\begin{array}{c}3.17\\3.16\\3.14\\3.14\\2.65\\1.79\\1.79\\1.79\\1.77\\1.78\\1.77\\1.77\\1.77\\1.77\\1.77\\1.77$

Figure S66 ¹³C NMR (125 MHz) spectrum of **6b** in DMSO-d6

Figure S68 ¹³C NMR (125 MHz) spectrum of 6d in DMSO-d6

Azacyclotridecane (6e)

Figure S70 ¹³C NMR (100 MHz) spectrum of **6e** in CDCl₃

6. References

- 1. Y. Pan, Z. Luo, J. Han, X. Xu, C. Chen, H. Zhao, L. Xu, Q. Fan and J. Xiao, B(C6F5)3-Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane, *Advanced Synthesis & Catalysis*, 2019, **361**, 2301-2308.
- 2. Z. Luo, Y. Pan, Z. Yao, J. Yang, X. Zhang, X. Liu, L. Xu and Q.-H. Fan, BF3·Et2O as a metalfree catalyst for direct reductive amination of aldehydes with amines using formic acid as a reductant, *Green Chemistry*, 2021, **23**, 5205-5211.
- 3. I. Chatterjee and M. Oestreich, B(C6F5)3-catalyzed transfer hydrogenation of imines and related heteroarenes using cyclohexa-1,4-dienes as a dihydrogen source, *Angew Chem Int Ed Engl*, 2015, **54**, 1965-1968.
- 4. J. Zhang and S. Chang, cine-Silylative Ring-Opening of alpha-Methyl Azacycles Enabled by the Silylium-Induced C-N Bond Cleavage, *J Am Chem Soc*, 2020, **142**, 12585-12590.
- 5. J. H. Cho, S. Byun, A. Cho and B. M. Kim, One-pot, chemoselective synthesis of secondary amines from aryl nitriles using a PdPt–Fe3O4 nanoparticle catalyst, *Catalysis Science & Technology*, 2020, **10**, 4201-4209.
- F. I. McGonagle, D. S. MacMillan, J. Murray, H. F. Sneddon, C. Jamieson and A. J. B. Watson, Development of a solvent selection guide for aldehyde-based direct reductive amination processes, *Green Chemistry*, 2013, 15.
- A. Lator, Q. G. Gaillard, D. S. Merel, J. F. Lohier, S. Gaillard, A. Poater and J. L. Renaud, Room-Temperature Chemoselective Reductive Alkylation of Amines Catalyzed by a Well-Defined Iron(II) Complex Using Hydrogen, *J Org Chem*, 2019, **84**, 6813-6829.
- 8. D. Hollmann, A. Tillack, D. Michalik, R. Jackstell and M. Beller, An improved ruthenium catalyst for the environmentally benign amination of primary and secondary alcohols, *Chem Asian J*, 2007, **2**, 403-410.
- J.-S. Ouyang, S. Liu, B. Pan, Y. Zhang, H. Liang, B. Chen, X. He, W. T. K. Chan, A. S. C. Chan, T.-Y. Sun, Y.-D. Wu and L. Qiu, A Bulky and Electron-Rich N-Heterocyclic Carbene–Palladium Complex (SIPr)Ph2od(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature, ACS Catalysis, 2021, 11, 9252-9261.
- 10. S. B. Otvos and C. O. Kappe, Continuous-Flow Amide and Ester Reductions Using Neat Borane Dimethylsulfide Complex, *ChemSusChem*, 2020, **13**, 1800-1807.
- T. Lebleu, J. Maddaluno and J. Legros, Selective monoalkylation of amines with light electrophiles using a flow microreactor system, *Organic Chemistry Frontiers*, 2015, 2, 324-327.
- 12. A. Chartoire, A. Boreux, A. R. Martin and S. P. Nolan, Solvent-free aryl amination catalysed by [Pd(NHC)] complexes, *RSC Advances*, 2013, **3**.
- 13. O. Saidi, A. J. Blacker, M. M. Farah, S. P. Marsden and J. M. Williams, Iridium-catalysed amine alkylation with alcohols in water, *Chem Commun (Camb)*, 2010, **46**, 1541-1543.
- 14. X. Jv, S. Sun, Q. Zhang, M. Du, L. Wang and B. Wang, Efficient and Mild Reductive Amination of Carbonyl Compounds Catalyzed by Dual-Function Palladium Nanoparticles, *ACS Sustainable Chemistry & Engineering*, 2019, **8**, 1618-1626.
- 15. X. Guo and O. S. Wenger, Reductive Amination by Photoredox Catalysis and Polarity-Matched Hydrogen Atom Transfer, *Angew Chem Int Ed Engl*, 2018, **57**, 2469-2473.

- 16. B. Chatterjee, D. Kalsi, A. Kaithal, A. Bordet, W. Leitner and C. Gunanathan, One-pot dual catalysis for the hydrogenation of heteroarenes and arenes, *Catalysis Science & Technology*, 2020, **10**, 5163-5170.
- R. Kokane, Y. Corre, E. Kemnitz, M. K. Dongare, F. Agbossou-Niedercorn, C. Michon and S. B. Umbarkar, Palladium supported on magnesium hydroxyl fluoride: an effective acid catalyst for the hydrogenation of imines and N-heterocycles, *New Journal of Chemistry*, 2021, **45**, 19572-19583.
- 18. H. Fang, G. Wang and M. Oestreich, Mild reductive rearrangement of oximes and oxime ethers to secondary amines with hydrosilanes catalyzed by B(C6F5)3, *Organic Chemistry Frontiers*, 2021, **8**, 3280-3285.