Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Improved methane dehydrogaromatization reaction over Mo and Cr co-doped ZSM-5 catalyst

Koji Miyake, ^{*a, b} Tomoka Sumi,^a Shinya Kokuryo, ^a Haruna Kitamura, ^a Jose A. Hernandez Gaitan, ^a Yoshiaki Uchida^a and Norikazu Nishiyama^{a, b}

^aDivision of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan ^bInnovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan E-mail: <u>kojimiyake@cheng.es.osaka-u.ac.jp</u>

Contents

1.	Experimental part	
2.	Supplementary tables and figures	

1. Experimental Part

1.1 Catalyst preparation

Ammonium Molybdate Tetrahydrate (Wako FUJIFILM), Chromiium(III) Acetate (Wako FUJIFILM) and H⁺ type ZSM-5 zeolite (822HOA, TOSOH Co.) were used without further purification. An incipient wetness impregnation was applied to load Mo or Cr on ZSM-5. First, ZSM-5 was mixed with an aqueous solution containing Mo or Cr. Afterward, the sample was dried at 363 K and calcined under air at 823 K for 5 h. The samples were donated as "Mo/ZSM-5" and "Cr(x)/ZSM-5", where x means the weight ratio of Cr [wt%]. Second, Mo was introduced to "Cr(x)/ZSM-5" by an incipient wetness impregnation similarly. Those samples were named "Mo/Cr(x)/ZSM-5". As a comparison, we loaded 1 wt % of Cr on Mo/ZSM-5. The sample was donated "Cr/Mo/ZSM-5"

1.2 Characterization

The crystal structures of all products were determined by X-ray diffraction (XRD) patterns recorded on a PANalytical X'Pert-MPD diffractometer using Cu-Kαradiation. The morphology of samples was observed by transmission electron microscopy (TEM) observation. The energy dispersive X-ray spectroscopy (EDX) for the determination of Cr contents was performed on JEOL JCM-7000. To obtain physical information of samples, N₂ adsorption measurements at 77 K were conducted using BELSORP-Max (MicrotracBel). Diffuse reflectance ultraviolet-visible (UV-vis) spectra of the samples were analyzed on a JASCO V-770 spectrophotometer. NH₃ temperature programmed deposition (NH₃-TPD) measurements were carried out to evaluate the acidity

1.3 Methane dehydroaromatization (MDA) reaction tests

MDA reactions over zeolite catalysts were carried out in a fixed bed reactor at atmospheric pressure referring to our previous work. The catalyst (0.05 g) was loaded into a quartz tube (i.d. 4 mm) and then the temperature was raised to 973 K under He flow. The feed gas of 66.5 vol% ethane and balanced He was fed at a total flow rate of 7.5 cm³/min. The product stream was analyzed online with Shimadzu GC-2025 gas chromatographs equipped with a flame ionization detector. GS ALUMINA was used as a GC column. Methane conversion [%] and product yields [%] were calculated as follows:

(Methaneconversion[%]) $100 \times \frac{(C - mol \ of \ methane \ at \ the \ inlet) - (C - mol \ of \ methane \ at \ the \ outlet)}{(C - mol \ of \ methane \ at \ the \ inlet)}$

_

 $(Product yields [\%]) = \frac{100 \times \frac{(C - mol \ of \ product \ at \ the \ outlet)}{(C - mol \ of \ methane \ at \ the \ inlet)}}$

The amount of coke deposition on the spent catalysts was measured by Thermo Gravimetry Analyzer (TGA). The weight losses from 573 to 1073 K were assigned to the combustion of the deposited coke.

Table S1 Si/Al, Si/Mo and Si/Cr ratios determined by EDX analysis					
	Si/Al	Si/Mo	Si/Cr		
ZSM-5	9.94	-	-		
Cr0.5/ZSM-5	10.37	-	164.44		
Cr1.0/ZSM-5	11.19	-	89.83		
Cr3.0/ZSM-5	10.53	-	38.84		
Mo/ZSM-5	9.94	5.34	-		
Mo/Cr0.5/ZSM-5	10.18	6.54	199.62		
Mo/Cr1.0/ZSM-5	9.87	7.17	127.34		
Mo/Cr3.0/ZSM-5	9.43	6.53	47.20		

2. Supplementary tables and figures

Fig. S1 (a) ZSM-5, (b) Mo/ZSM-5, (c) Cr/ZSM-5 and (d) Mo/Cr/ZSM-5.

Fig. S2 N_2 adsorption isotherms of ZSM-5, Cr/ZSM-5, Mo/Cr/ZSM-5 and Mo/ZSM-5.

Fig. S3 NH₃-TPD profiles of ZSM-5, Cr/ZSM-5, Mo/Cr/ZSM-5 and Mo/ZSM-5.

Time on stream	Methane Conversion [C-mol%]	Yield [C-mol%]			
[min]		Ethane	Ethylene	Benzene	Toluene
60	1.19	0.02	0.38	0.81	0
120	1.51	0	0.34	0.52	0
180	1.40	0	0.32	0.37	0
240	1.01	0	0.27	0.27	0
300	0.71	0	0.25	0.25	0

Table S2 Conversion and yields during MDA reaction over Mo/ZSM-5.

Table S3 Conversion and yields during MDA over Mo/Cr1.0/ZSM-5.

Time on stream	Methane Conversion [C-mol%]	Yield [C-mol%]			
[min]		Ethane	Ethylene	Benzene	Toluene
60	2.43	0.20	0.35	2.66	0.15
120	1.80	0.12	0.46	1.81	0
180	3.47	0.07	0.49	1.31	0
240	2.35	0.06	0.53	1.17	0
300	2.46	0.05	0.54	1.01	0

Fig. S4 Time courses of benzene yield over Mo/Cr(x)/ZSM-5 and Mo/ZSM-5.

Fig. S5 Time courses of benzene yield over Cr/Mo/ZSM-5 and Mo/ZSM-5.