Supplementary Information

Pd/Co₃O₄-Pd/PdO formed in situ on the surface of the selfassembly ferrocenylimine Pd(II)/Co(II) monolayer for catalyzing Suzuki cross coupling reaction ----Formation, synergistic effect, and catalytic mechanism

Penghui Han, ^{1†} Shuiqing Zhu,^{1†} Bowen Yang,¹ Dongmei Huang,¹ Ruirui Ren,¹ Tiesheng Li,^{1*} Minghua Liu,^{2,3*} Yangjie Wu^{1*}

¹ College of Chemistry, Zhengzhou University, Kexuedadao 100, Zhengzhou, 450001, P. R. China
² Henan Institute of Advanced Technology, Zhengzhou University, Kexuedadao 100, Zhengzhou 450001, Henan Province, P.R. China.

³ Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, P. R China.

*Corresponding author: Tiesheng Li

E-mail: lts34@zzu.edu.cn

Contents

1. Figure caption	Page 2
2. Table lists	Page 9

1. Figure caption

Fig. S1 FT-IR spectra of GO, GO@APTES, GO@APTES-Fcl, and GO@APTES-Fcl-Pd/Co.

Fig. S2 XRD spectra of GO, GO@APTES, GO@APTES-Fcl and GO@APTES-Fcl-Pd/Co.

Fig. S3 Raman spectra of GO, GO@APTES, GO@APTES-Fcl and GO@APTES-Fcl-Pd/Co.

Fig. S4 (a) Survey XPS spectra of **GO@APTES-Fcl** and **GO@APTES-Fcl-Pd/Co**, HR-XPS of (b) C 1s, (c) N 1s, (d)Fe 2p, (e) Pd 3d, and (f) Co 2p.

Fig. S5 SEM images of (a) GO, (b) GO@APTES, (c) GO@APTES-Fcl, (d) GO@APTES-Fcl-Pd/Co.

Fig. S6 TEM images of (a) GO, (b) GO@APTES, (c) GO@APTES-Fcl, (d) GO@APTES-Fcl-Pd/Co.

Fig. S7 TEM image and the corresponding elemental mapping analysis of GO@APTES-Fcl-Pd/Co.

Fig. S8 EIS of the catalyst on the ITO glass for GO, GO@APTES, GO@APTES-Fcl, GO@APTES-Fcl-Pd/Co.

Fig. S9 (a) N2 adsorption-desorption isotherms and (b) the corresponding pore size distribution for GO, GO@APTES, GO@APTES-Fcl, GO@APTES-Fcl-Pd/Co.

.

Fig. S 10 XRD spectra of Si-OH, Si@APTES, Si@APTES-Fcl, Si@APTES-Fcl-Pd/Co.

Fig. S11 Water contact angle images of Si-OH, Si@APTES, Si@APTES-Fcl, Si@APTES-Fcl-Pd/Co.

Fig. S12 AFM images of the surface topography of the modified silicon wafer (a) Si-OH,

(b) Si@APTES, (c) Si@APTES-Fcl, (d) Si@APTES-Fcl-Pd/Co

Fig. S13 Hot filtration and kinetic experiment of GO@APTES-Fcl-Pd_{0.1}Co_{0.9}

Fig. S14 React-IR plots over time for the formation of 4-Phenyltoluene by Suzuki reaction (a) 3D map catalyzed by $GO@APTES-Fcl-Pd_{0.1}Co_{0.9}$, (b) 3D map catalyzed by $(PhCN)_2PdCl_2/CoCl_2 \cdot 6H_2O$, (c) Kinetic analysis of the reaction catalyzed by $GO@APTES-Fcl-Pd_{0.1}Co_{0.9}$ (black line) and $(PhCN)_2PdCl_2/CoCl_2 \cdot 6H_2O$.(red line)

Fig. S15 UV spectra of **Si-PhBr** in the three-phase testing. Treatment: washed with solvents (DCM, EtOH, and MeOH) and ultrasonic.(naphthybronoic acid, red; **Si-PhBr**, black; **Si-PhBr**[add **Si@APTES-Fcl-Pd**_{0.1}Co_{0.9} without wash], blue: **Si-PhBr** [added **GO@APTES-Fcl-Pd**_{0.1}Co_{0.9}, washed], pink).

Fig. S16 The varied ratios of Co(III)/Co(II) on the surface of GO@APTES-Fcl-Pd_{0.1}Co_{0.9} during catalysis and recycling.

Fig. S17 SEM images of **GO@APTES-Fcl-Pd_{0.1}Co_{0.9}** (a) fresh, (b) 1st run, (c) 2nd run, (d) 3rd run, (e) 4th run, (f) 5th run, (g) 6th run, (h) 7th run, (i) 8th run

Fig. S18 XRD spectra of GO@APTES-Fcl-Pd_{0.1}Co_{0.9} in the process of recycles

Fig. S19 Raman spectra of GO@APTES-Fcl-Pd_{0.1}Co_{0.9} in the process of recycles

Fig. S20 FT-IR spectra of GO@APTES-Fcl-Pd $_{0.1}$ Co $_{0.9}$ in the process of recycles.

Fig. S21 histogram of the particles diameters in the process of recycling.: (a) 1st run, (b) 2nd run, (c) 3rd run, (d) 4th run, (e) 5th run, (f) 6th run, (g) 7th run, (h) 8th run

2. Table Lists

Table S1 Screening of Pd sources in the Suzuki coupling reaction using GO-APTES-Fcl-Pd/Co.ª

Pd source	Base	Solvent	Time(min)	T(°C)	Isolated yield(%)
$(C_{17}H_{14}P)_2Fe \cdot PdCl_2$	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	44
(CF ₃ COO) ₂ Pd	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	35
PdCl ₂	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	92
Pd(OAc) ₂	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	88
(C ₆ H ₅ CN) ₂ PdCl ₂	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	99
Li ₂ PdCl ₄	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	93

^aReaction condition:PhB(OH)₂ (0.30 mmol), 4-bromotoluene (0.25 mmol), Base (0.5 mmol), **GO-APTES-Fcl-Pd/Co** (1mg), solvent (4 mL), temperature (70 °C), 120 min.

Table S2 Optimization of reaction conditions in Suzuki coupling using GO@APTES-Fcl-Pd $_{0,1}Co_{0,9}$.^a

Entry	Base	Solvent	Time (min)	T (°C)	Isolated yield (%)
1	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	80	99
2	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	60	38
3	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	99
4	K ₂ CO ₃	H ₂ O	120	70	26
5	K ₂ CO ₃	EtOH	120	70	14
6	K ₂ CO ₃	CH ₃ OH	120	70	4
7	K ₂ CO ₃	THF	120	70	96
8	K ₂ CO ₃	Toluene	120	70	12
9	K ₂ CO ₃	CH ₃ COOC ₂ H ₅ (EA)	120	70	trace
10	K ₂ CO ₃	H ₂ O:EtOH(3:1)	120	70	78
11	K ₂ CO ₃	H ₂ O:EtOH(2:1)	120	70	80
12	K ₂ CO ₃	DMF	120	70	12
13	K ₂ CO ₃	DMSO	120	70	14
14	K ₂ CO ₃	1,4-Dioxane	120	70	11
15	K ₂ CO ₃	H ₂ O:EtOH(1:1)	5	70	10
16	K ₂ CO ₃	H ₂ O:EtOH(1:1)	10	70	13
17	K ₂ CO ₃	H ₂ O:EtOH(1:1)	20	70	40
18	K ₂ CO ₃	H ₂ O:EtOH(1:1)	40	70	42
19	K ₂ CO ₃	H ₂ O:EtOH(1:1)	60	70	86
20	K ₂ CO ₃	H ₂ O:EtOH(1:1)	90	70	91
21	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	99
22	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	99
23	Na ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	89
24	NaHCO ₃	H ₂ O:EtOH(1:1)	120	70	32
25	NaOH	H ₂ O:EtOH(1:1)	120	70	74
26	K ₃ PO ₄	H ₂ O:EtOH(1:1)	120	70	50
27	K ₂ CO ₃	H ₂ O:EtOH(1:1)	120	70	58 ^b
28	K ₂ CO ₃	H ₂ O:EtOH(1:1)	150	70	67 ^b

^aReaction conditions: PhB(OH)₂(0.30 mmol), 4-bromotoluene (0.25 mmol), Base (0.5 mmol), solvent (4 mL)

at 70 °C ; ${}^{b}PhB(OH)_{2}$ (0.55 mmol), 4-bromotoluene (0.50 mmol), Base (1.0 mmol), catalyst: GO@APTES-Fcl-Pd_{0.1}Co_{0.9} (1 mg).

Entry	Cat.	Solvent	Time (min)	Т (°С)	Isolated yield (%)	TOF (h ⁻¹)
1	GO@APTES-Fcl-Pd _{0.5} Co _{0.5}	H ₂ O:EtOH(1:1)	120	70	96	2280
2	GO@APTES-Fcl-Pd _{0.1} Co _{0.9}	H ₂ O:EtOH(1:1)	120	70	99	11353
3	GO@APTES-Fcl-Pd _{0.07} Co _{0.93}	H ₂ O:EtOH(1:1)	120	70	82	2613
4	GO@APTES-Fcl-Pd _{0.05} Co _{0.95}	H ₂ O:EtOH(1:1)	120	70	16	9878
5	GO@APTES-Fcl-Pd _{0.02} Co _{0.98}	H ₂ O:EtOH(1:1)	120	70	3	1413
6	GO@APTES-Fcl-Pd _{0.1} Cu _{0.9}	H ₂ O:EtOH(1:1)	120	70	99	2750
7	GO@APTES-Fcl-Pd _{0.1} Ru _{0.9}	H ₂ O:EtOH(1:1)	120	70	93	870
8	GO@APTES-Fcl-Pd _{0.07} Ru _{0.93}	H ₂ O EtOH(1:1)	120	70	99	1767
9	GO@APTES-Fcl-Pd _{0.05} Fe _{0.95}	H ₂ O:EtOH(1:1)	120	70	19	164
10	GO@APTES-Fcl-Pd _{0.1} Fe _{0.9}	H ₂ O:EtOH(1:1)	120	70	40	3940
11	GO@APTES-Fcl-Pd _{0.5} Fe _{0.5}	H ₂ O:EtOH(1:1)	120	70	94	422
12	GO@APTES-Fcl-Pd _{0.05} Ni _{0.95}	H ₂ O:EtOH(1:1)	120	70	23	2521
13	GO@APTES-Fcl-Pd _{0.1} Ni _{0.9}	H ₂ O:EtOH(1:1)	120	70	66	43552
14	GO@APTES-Fcl-Pd _{0.5} Ni _{0.5}	H ₂ O:EtOH(1:1)	120	70	90	499
15	GO@APTES-Fcl-Pd _{0.1} Co _{0.45} Ni _{0.45}	H ₂ O:EtOH(1:1)	120	70	88	1337

Table S3 Effect of metal types and proportions on the catalytic performance of **GO@APTES-Fcl-Pd/M**.

^aReaction conditions: $PhB(OH)_2$ (0.30 mmol), 4-bromotoluene (0.25 mmol), Base (0.5 mmol), **GO@APTES-Fcl-Pd/M** (1 mg), solvent (4 mL), temperature (70 °C).

Table S4 Catalytic activity of different catalytic system in the Suzuki cross coupling reaction ^a

E.4.		Pd	X ² .11(0/)	TON/TOF	
Entry	Catalyst	loading(mmol·mg ⁻¹)	¥leid (%)	IUN/IUF	
1	GO	-	0^b	-	
2	GO@APTES	-	0^c	-	
3	GO@APTES-Fcl	-	0^d	-	
4	$(C_6H_5CN)_2PdCl_2/CoCl_2·6H_2O$	1.09×10 ⁻⁵	69 ^e	15825/7918	
5	GO+(C ₆ H ₅ CN) ₂ PdCl ₂ /CoCl ₂ ·6H ₂ O	1.09×10-5	53	12155/6078	

E.4.		Pd	X7°.11(0/)	TON/TOF	
Entry	Catalyst	loading(mmol·mg ⁻¹)	Y leid (%)		
6	GO@APTES-Fcl	1.00×10-5	(2	142201/7110	
0	+(C ₆ H ₅ CN) ₂ PdCl ₂ /CoCl ₂ ·6H ₂ O	1.09~10 °	62	142201//110	
7	Si@APTES-Fcl-Pd _{0.1} Co _{0.9}	4.16×10-7	45 ^f	130216/10851	
8	GO@APTES-Fcl-Pd _{0.1} Co _{0.9}	1.09×10 ⁻⁵	99 g	22706/11353	
9	Si/APTES-Fcl-Pd _{0.1} Co _{0.9}	1.09×10 ⁻⁵	33 ^h	7568/3784	

^aReaction conditions: PhB(OH)₂ (0.30 mmol), 4-bromotoluene (0.25 mmol), K_2CO_3 (0.5 mmol), catalyst 1 mg, solvent (50% aqueous alcohol 4 mL) at 70 °C for 2 h. ^bGO 1 mg. ^cGO@APTES 1 mg. ^dGO@APTES-Fcl (1mg). ^e(C₆H₅CN)₂PdCl₂/CoCl₂·6H₂O (1.09×10⁻⁵ mmol). ^fSi@APTES-Fcl-Pd_{0.1}Co_{0.9} (1×1 cm²) for 12 h. ^gGO@APTES-Fcl-Pd_{0.1}Co_{0.9} (1mg). ^bSi/APTES-Fcl-Pd_{0.1}Co_{0.9} (spin- coated film on silicon wafer).

Entry	Ar-X	Ar-B(OH) ₂	Product	Yield(%)
1	Br	B(OH)2		85
2	Br	B(OH) ₂		99
3	Br	B(OH)2		89
4	——————————————————————————————————————	B(OH) ₂		99
5	MeO	B(OH)2	MeO	98
6	MeO	B(OH) ₂	MeO	99
7	Br	B(OH)2	OMe	58
8	O ₂ N-Br	B(OH) ₂	0 ₂ N-	99
9	Br O ₂ N	—B(OH)2	O ₂ N	97
10	Br	B(OH)2	СНО	55
11	OHC - Br	B(OH) ₂	онс-	71
12	OHC	B(OH)2	OHC	62
13	Br	B(OH) ₂		67

Table S5 Screening of different aryl halides with arylboronic acid in the Suzuki cross coupling reaction ^a

Entry	Ar-X	Ar-B(OH) ₂	Product	Yield(%)
14	NCBr	B(OH)2	NC	99
15		B(OH) ₂		99
16	MeO	B(OH) ₂	MeO	99
17	-Cl	B(OH)2		trace
18	O ₂ N-Cl	B(OH)2	02N-	trace
19	CI	B(OH)2		trace
20	— — Br	NB(OH) ₂	N	trace
21	Br	MeO B(OH)2		96
22	Br	B(OH) ₂		81
23	Br	B(OH)2		58 ^b

^aReaction conditions: Ar-B(OH)₂ (0.30 mmol), Ar-X (0.25 mmol), Base (0.5 mmol), **GO@APTES-Fcl-Pd**_{0.1}Co_{0.9} (1 mg), solvent (4 mL) at 70 °C $_{\circ}$ ^bPhB(OH)₂ (0.55 mmol), 4-bromotoluene (0.50 mmol), Base (1.0 mmol), **GO@APTES-Fcl-Pd**_{0.1}Co_{0.9} (1 mg).

No.	Catalyst	Reaction conditions	X	Yield (%)	TOF (h ⁻¹)	Ref.
7	GO-Diimine-Ni/Pd1 (2.2×10 ⁻⁶ mol%Pd)	H ₂ O:EtOH, 70 °C, Na ₂ CO ₃ , 1h	Br	99	21277	[64]
8	GO@Fcl-Pd _{0.1} Cu _{0.9} (0.032 mol%Pd)	Na ₂ CO ₃ , H ₂ O:EtOH, at 80 °C, 2h	Br	99	1484375	[74]
9	GO@T-Pd _{0.01} /Cu _{0.99} (0.0033 mol%Pd)	Na ₂ CO ₃ , EtOH:H ₂ O, 1h, 70 ℃	Br	99	118588	[76]
10	GO@PPD-Pd (0.017 mol%Pd)	K ₂ CO ₃ , H ₂ O:EtOH (1:1), 20 min, 60 °C	Br	97	17118	[77]
11	GO@Apimp-Pd1/C u _{6.5} (0.000145 mol%Pd)	K ₂ CO ₃ , H ₂ O:EtOH=1:1, 70 °C, 2h	Br	89	307320	[79]
12	Fe ₃ O ₄ @SiO ₂ -APBA-Pd (1.2 mol%Pd)	K ₂ CO ₃ , H ₂ O:EtOH, 60 °C	Br	97	6230	[89]

Table S6 Catalytic performance of the $GO@APTES-Fcl-Pd_{0,1}Co_{0,9}$ in Suzuki coupling reaction compared with other Pd-based catalysts reported

13	GO@NHC-Pd (0.01 mol%Pd)	K ₂ CO ₃ , C ₂ H ₅ OH, 50 °C, 1h	Br	92	1823	[90]
14	Pd/Fe ₃ O ₄ /s-G (0.3 mol%Pd)	K ₂ CO ₃ , EtOH:H ₂ O, 30 min, 80 ℃	Br	97	1293	[91]
15	Pd _{0.5} Ru _{0.5} -PVP NPs (0.16 mol%Pd)	K ₂ CO ₃ , DMA:H ₂ O, 100 °C, 0.08h	Br	96	15000	[92]
16	GO-Fe ₃ O ₄ /Pd (0.5 mol%Pd)	K ₂ CO ₃ , H ₂ O:EtOH, 80 °C, 0.15h	Ι	95	1140	[93]
17	Pd/CoO-C (1.2 mol%Pd)	K ₂ CO ₃ , H ₂ O, at 80 °C, 4h	Br	96	28	[108]

Table S7 Poisoning experiments of GO@APTES-Fcl-Pd_{0.1}Co_{0.9^a}

99ª
ace ^b
40 ^c
tr

^aReaction conditions: 4-bromotoluene (0.25 mmol), Phenylboric acid (0.3 mmol), K_2CO_3 (1 mmol), **GO@APTES-Fcl-Pd_{0.1}Co_{0.9}** 1 mg, solvent (4 mL) at 70 °C for 120 min. ^b 0.5 equiv of 2,2'-Dipyridyl (per metal atom). ^c 0.5 equiv of Thiophene (per metal atom).

Time(min)	0	5	10	20	40	60	90	120
Pd^0	335.85	335.95	335.55	335.20	335.00	335.10	335.45	335.41
Pd2+	338.35	338.65	338.66	338.72	338.50	338.49	338.46	338.59
Co3+	780.56	780.60	779.55	780.66	780.73	780.40	779.64	780.15
Co2+	782.04	782.29	782.15	782.52	782.84	782.59	781.81	782.59
Fe2+	708.16	707.89	708.32	708.21	709.27	708.41	708.10	708.26
Fe3+	712.19	712.33	712.22	712.18	712.13	713.93	712.78	712.07

Table S8The BE changes of Pd, Co, and Fe on the surface of GO@APTES-Fcl-Pd_0.1Co_0.9during catalysis

Table S9 The BE changes of Pd, Co, and Fe on the surface of GO@APTES-Fcl-Pd_{0.1}Co_{0.9} in

100110	110.00
I HOVE	
	ing.
~	-

Recycle(Times)	0	1	2	4	6	8	
Pd0	335.85	335.41	335.43	335.74	335.51	335.71	
Pd^{2+}	338.38	338.59	337.99	338.02	337.92	337.89	
Co ³⁺	780.56	780.15	781.49	781.42	780.53	781.61	
Co ²⁺	782.04	782.59	783.29	782.92	782.18	783.34	
Fe ²⁺	708.16	708.26	709.01	708.58	710.02	711.12	
Fe ³⁺	712.19	712.07	712.58	712.90	712.92	713.44	