Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Asymmetric Hydrogenation using Covalently Immobilized Ru-BINOL-AP@MSNs Catalyst

Pratikkumar Lakhani, Chetan K. Modi*

Applied Chemistry Department, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Vadodara- 390001, Gujarat, India E-mail: <u>chetanmodi-appchem@msubaroda.ac.in</u>; Tel: (O) +91-0265-2434188

Supporting Information

Table of Contents

1. General Information	
2. Characterization's Techniques Information	
3. Spectral Data for Modified S-BINOL	
4. Characterization Data for Catalyst	S6-S10
5. Chromatographic data for Products	S11-S13
6. NMR and FTIR Spectra for Products	

1. General Information

S-BINOL, RuCl₃·3H₂O, IPA, NaOH, CTAB, sodium hydride, dimethylformamide, methoxy methyl chloride, diethyl ether, toluene, Acetophenone and its derivatives, KOH and NaHCO₃ was procured from Loba Chemie, India. (3-aminopropyl)trimethoxysilane was purchased from Tokyo Chemical Industry Co., Ltd. (TCI). TEOS was purchased from Sisco Research Laboratories Pvt. Ltd.(SRL) – India. all of these reagents are of analytical grade and used as received without further purification.

2. Characterization's Techniques Information

For the characterization of as-prepared materials such as MSNs, AP@MSNs, BINOL-AP@MSNs and Ru-BINOL-AP@MSNs different physicochemical techniques have been employed. ¹³C CP MAS NMR using the model: JEOL, JAPAN ECZR Series 600 MHz NMR SPECTROMETER at SAIF, IIT Bombay, Mumbai, India. XPS spectra were performed on Specs, Phoibios 225 spectrometer with Al Ka radiation (1486.6 eV), Synchrotrons Utilisation Section, Raja Ramanna Centre for Advanced Technology, Indore, India. The quantitative analysis of Fe metal ion of the nanocatalysts was carried out by ICP-AES using the model: ARCOS, Simultaneous ICP Spectrometer at SAIF, IIT, Mumbai. The structure determinations of as-prepared materials were performed on Bruker AXS D8 Advance X-ray powder diffractometer with a CuK α (λ =1.54058) target and movable detector, which scans the intensity of diffracted radiation within the range of 5° -80° as a function of the angle 20 between the incident and diffracted beams. Transmission electron microscopy (HR-TEM) of as-prepared materials was performed on Model HRTEM: JEOL/JEM 2100 at Sophisticated Test & instrumentation centre Cochin University of Science and Technology Cochin. Field Emission Scanning Electron Microscopy (FESEM) of as-prepared materials was performed the images were taken at 5 keV and Model: Auriga at Synchrotrons Utilisation Section, Raja Ramanna Centre for Advanced Technology, Indore, India. BET surface area and pore size distribution measure on micromeritics. FTIR spectra of as prepared materials were performed in the range: 4000-400 cm⁻¹ on a model: FTIR - 8400S Shimadzu using KBr pellets. Thermogravimetric analysis of the as-prepared materials was performed on Shimadzu TGA-50 instrument (50 to 700 °C at 10 °C min⁻¹ in air atmosphere) at the Applied Chemistry Department, Faculty of Technology & amp; Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, India.

3. Spectral Data for Modified S-BINOL

Fig. S1. ¹H NMR spectra of the 2-(methoxymethoxy)-1-(2-(methoxymethoxy)-naphthalen-1-yl)naphthalene. ¹H NMR (400 MHz, CDCl₃): δ = 8.18 (d, 2H), 7.99 (d, 2H), 7.89 (d, 2H), 7.36 (m, 2H), 7.28 (m, 4H), 5.12 (d, 2H), 5.10 (d, 2H), 3.34 (s, 6H).

Fig. S2. ¹³**C NMR spectra of the 2-(methoxymethoxy)-1-(2-(methoxymethoxy)-naphthalen-1-yl)naphthalene.** ¹³C NMR (100 MHz, CDCl₃): δ = 152.64, 134.02, 129.89, 129.41, 127.88, 126.31, 124.08, 117.30, 95.21 and 55.85.

Fig. S3. FTIR spectra of the 2-(methoxymethoxy)-1-(2-(methoxymethoxy)-naphthalen-1-yl)naphthalene.

4. Characterization Data for Catalyst

Fig. S4. Histogram graph of MSNs.

Fig. S5. ¹³C CP MAS NMR spectra of Ru-BINOL-AP@MSNs.

Fig. S6. (A) N₂ adsorption- desorption isotherms of (a) MSNs, (b) AP@MSNs, (c) BINOL-AP@MSNs and (d) Ru-BINOL-AP@MSNs. (B) BJH pore size distributions of (a) MSNs, (b) AP@MSNs, (c) BINOL-AP@MSNs and (d) Ru-BINOL-AP@MSNs.

Fig. S7. TGA curves of (a) MSNs, (b) AP@MSNs, (c) BINOL-AP@MSNs and, (d) Ru-BINOL-AP@MSNs.

Fig. S8. Recyclability test of Ru-BINOL-AP@MSNs catalyst over asymmetric hydrogenation reaction.

5. Chromatographic data for Products

Column: Chiralpak OJ-H (250 x 4.6) mm, 20µ (make: Diacel), Mobile phase: (n-Hexane and isopropanol (80:20)), Flow rate: 1.0 mL/min, Detection: 280 nm.

Enantiomeric excess (ee%) was calculated from the chromatographic data by the following equation:

 $(ee\%) = \left[\frac{peak area 1 - peak area 2}{peak area 1 + peak area 2}\right] \times 100$

1 st cycle of Ru-BINOL-AP@MSNs as a catalyst			
Peak	Ret. Time	Area	Area %
1	7.57	9549693	95.42
2	8.15	458726	4.58
Total		10008419	100

Fig. S9. Chiral HPLC spectra of the Acetophenone as a reactant.

4-Br Acetophenone as a reactant			
Peak	Ret. Time	Area	Area %
1	9.53	10125974	95.96
2	9.81	426105	4.04
Total		10552079	100

Fig. S10. Chiral HPLC spectra of the 4-Br Acetophenone as a reactant.

4-Cl Acetophenone as a reactant			
Peak	Ret. Time	Area	Area %
1	7.71	11896478	93.26
2	8.58	860247	6.74
Total		12756725	100

Fig. S11. Chiral HPLC spectra of the 4-Cl Acetophenone as a reactant.

4-OMe Acetophenone as a reactant			
Peak	Ret. Time	Area	Area %
1	11.30	12015478	92.99
2	11.99	905147	7.01
Total		12920625	100

Fig. S12. Chiral HPLC spectra of the 4-OMe Acetophenone as a reactant.

4-OH Acetophenone as a reactant			
Peak	Ret. Time	Area	Area %
1	8.80	10255974	91.47
2	9.19	956188	8.53
Total		11212162	100

Fig. S13. Chiral HPLC spectra of the 4-OH Acetophenone as a reactant.

4-NH ₂ Acetophenone as a reactant			
Peak	Ret. Time	Area	Area %
1	13.12	11257848	90.26
2	14.16	1214874	9.74
Total		12472722	100

Fig. S14. Chiral HPLC spectra of the 4-NH₂ Acetophenone as a reactant.

6. NMR and FTIR Spectra for Products

Fig. S15. ¹H NMR spectra of the product (A).

¹H NMR spectra of the product (A). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28$ (m, ArH), 7.21 (m, ArH), 4.78 (m, -OH), 4.73(d, 1H), 1.08 (d, 3H).

Fig. S16. ¹³C NMR spectra of the product (A).

¹³C NMR spectra of the product (A). ¹³C NMR (100 MHz, CDCl₃): δ = 146.04, 128.33, 127.22 125.39, 70.02 and 25.16.

Fig. S17. FTIR spectra of the product (A)

Fig. S18. ¹H NMR spectra of the product (B).

¹H NMR spectra of the product (B). ¹H NMR (400 MHz, CDCl₃): δ = 7.45 (m, ArH), 7.25 (m, ArH), 4.89 (m, -OH), 4.83(d, 1H), 1.19 (d, 3H).

Fig. S19. ¹³C NMR spectra of the product (B).

 13 C NMR spectra of the product (B). 13 C NMR (100 MHz CDCl₃): δ (ppm) = 146.09, 128.26, 127.11, 125.37, 63.84 and 25.05.

Fig. S20. FTIR spectra of the product (B).

Fig. S21. ¹H NMR spectra of the product (C).

¹H NMR spectra of the product (C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.84 (m, ArH), 7.28 (m, ArH), 3.93 (m, -OH), 3.90 (d, 1H), 1.09 (d, 3H).

 13 C NMR spectra of the product (C). 13 C NMR (100 MHz, CDCl₃): δ (ppm) = 144.2, 133.2, 128.55, 126.80, 64.38, 25.31

Fig. S23. FTIR spectra of the product (C).

Fig. S24. ¹H NMR spectra of the product (D).

¹H NMR spectra of the product (D). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.84 (m, ArH), 6.76 (m, ArH), 3.91 (m, -OH), 3.88 (d, 1H), 3.54 (s, -OCH₃), 1.07 (d, 3H).

¹³C NMR spectra of the product (D). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 126.65, 113.76, 69.75, 55.25, 25.23.

Fig. S26. FTIR spectra of the product (D).

Fig. S27. ¹H NMR spectra of the product (E).

¹H NMR spectra of the product (E). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.68 (s, (P)-OH), 7.28 (m, ArH), 6.44 (m, ArH), 3.95 (m, -OH), 3.91 (d, 1H), 1.11 (d, 3H).

Fig. S28. ¹³C NMR spectra of the product (E).

¹³C NMR spectra of the product (E). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 193.31, 131.50, 118.90, 62.50, 25.8.

Fig. S29. FTIR spectra of the product (E).

Fig. S30. ¹H NMR spectra of the product (F).

¹H NMR spectra of the product (F). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.70 (m, ArH), 7.07 (m, ArH), 4.74 (m, -OH), 4.66 (s, -NH₂), 4.50 (d, 1H), 1.09 (d, 3H).

Fig. S31. ¹³C NMR spectra of the product (F).

¹³C NMR spectra of the product (F). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 196.92, 130.80, 126.51, 115.11, 63.69, 24.97.

Fig. S32. FTIR spectra of the product (F).