Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

A facile turn-on luminescence technique to trap hydrazine and its application in button mushroom (*Agaricus bisporus*)

Priyotosh Ghosh,^a Koushik Kumar Dey,^bAnsuman Chattopadhyay^b and Prithidipa Sahoo^{*a}

^aDepartment of Chemistry, Visva-Bharati University, Santiniketan-731235, India. ^bDepartment of Zoology, Visva-Bharati University, Santiniketan-731235, India.

CONTENT

Page no.

1. NMR spectra	2-5
2. Selectivity Experiment	6
3. Competitive selectivity in presence of other analytes	7
4. UV-vis fluorescence titration	8
5. Job'splot	9
6. Calculation of limit of detection	10
7. pH titration	11
8. DFT study	. 12-13
9. IR Spectroscopy Study	14
10. NMR spectra of C2, C3	15-16
11. Comparative Fluorescence study of CCF with C2,C3,C4	17-18
12. Quantitative analysis of hydrazine in button mushroom	19

¹H NMR of C1 in DMSO-d₆:

Figure S1. ¹H NMR of C1 in DMSO-d₆ (400 MHz).

¹³C NMR of C1 in DMSO-d₆:

Figure S2. ¹³C NMR of C1 in DMSO-d₆ (100 MHz).

¹H NMR of CCF in DMSO-d₆

Figure S3. ¹H NMR of CCF in DMSO-d₆ (400)

¹³C NMR of CCF in DMSO-d₆:

Figure S4. ¹³C NMR of CCF in DMSO-d₆ (100 MHz).

2. Selectivity Experiment

Figure S5. Fluorescence spectra of **CCF** in presence of different analytesat452 nm (λ_{ex} = 332 nm) in H₂O-CH₃CN (4:1, v/v) at neutral pH.1) Blank, 2) N₂H₄, 3) Zn²⁺, 4) Cu²⁺, 5) Pb²⁺, 6) Al³⁺, 7) OCl⁻, 8) CN⁻, 9) NO₃⁻, 10) H₂PO₄⁻, 11) NH₄OH 12) Pyridine, 13) n-Butylamine and 14) Ethylenediamine, 15) lysine, 16) histidine, 17) aniline, 18) cysteine, 19) SCN⁻, 20) H₂O₂, 21)CH₃NH₂, 22) N₂H₄, 23) Cl⁻, 24) F⁻, 25) alanine, 26) tryptophan, 27) leucine, 28) glycine, 29) ClO₄⁻, 30) N₃⁻, 31) NO₃⁻, 32) arginine.

3. Competitive selectivity in presence of other analytes

Figure S6. Histogram representing competitive fluorescence spectra of CCF+ N₂H₄ in presence of different analytes at 452 nm (λ_{ex} = 332 nm) in H₂O-CH₃CN (4:1, v/v) at neutral pH. [1) Blank, 2) N₂H₄, 3) N₂H₄+Zn²⁺, 4) N₂H₄+Cu²⁺, 5) N₂H₄+Pb²⁺, 6) N₂H₄+Mg²⁺, 7) N₂H₄+Ca²⁺, 8) N₂H₄+Na⁺, 9) N₂H₄+K⁺, 10) N₂H₄+F⁻, 11) N₂H₄+Cl⁻, 12) N₂H₄+ClO₄⁻, 13) N₂H₄+CN⁻, 14) N₂H₄+NO₃⁻, 15) N₂H₄+H₂PO₄⁻, 16) N₂H₄+Na⁺, 17) N₂H₄+NH₄OH 18) N₂H₄+Pyridine, 19) N₂H₄+n-Butylamine and 20) N₂H₄+Ethylenediamine]

4. UV-vis and fluorescence titration studies

UV-vis spectral studies:

A stock solution of **CCF** $(1 \times 10^{-5} \text{ M})$ was prepared in water-acetonitrile (4:1, v/v). N₂H₄ solution of concentration 1×10^{-4} M was prepared in Millipore water. All experiments were carried out in an aqueous medium at neutral pH. During the titration, each time a 1×10^{-5} M solution of **CCF** was filled in a quartz optical cell of 1 cm optical path length and N₂H₄ stock solution was added into the quartz optical cell gradually by using a micropipette.

Fluorescence spectral studies:

A stock solution of **CCF** (1×10^{-5} M) was prepared in water-acetonitrile(4:1, v/v). N₂H₄ solution of concentration 1×10^{-4} M was prepared in Millipore water. All experiments were carried out in aqueous medium at neutral pH. During titration, each time a 1×10^{-5} M solution of **CCF** was filled in a quartz optical cell of 1 cm optical path length and N₂H₄ stock solution was added into the quartz optical cell gradually by using a micropipette. For all fluorescence measurements, excitations were provided at 332 nm, and emissions were collected from 350 to 580 nm.

Figure S7. Job's plot of CCF (10 μ M) with N₂H₄ in acetonitrile-water (1:4, v/v), at neutral pH, by fluorescence method, which indicate 1:2 stoichiometry for CCF with N₂H₄. Standard deviations are represented by error bar (n=3).

6. Calculation of limit of detection (LOD) of CFC with N₂H₄:

The detection limit of the chemosensor CCF for N_2H_4 was calculated on the basis of fluorescence titration. To determine the standard deviation for the fluorescence intensity, the emission intensity of four individual receptors without N_2H_4 was measured by 10 times and the standard deviation of blank measurements was calculated.

The limit of detection (LOD) of CCF for sensing N_2H_4 was determined from the following equation:

$$LOD = K \times SD/S$$

Where K = 2 or 3 (we take 3 in this case); SD is the standard deviation of the blank receptor solution; S is the slope of the calibration curve.

Figure S8. Linear fit curve of CCF at 452 nm with respect to N₂H₄ concentration

For CCF with N₂H₄:

From the linear fit graph, we get slope = 8.80334×10^7 , and SD value is 0.3852. Thus, using the above formula, we get the Limit of Detection = 1.312×10^{-8} M. Therefore **CCF** can detect **N₂H₄** up to this very lower concentration by fluorescence technique.

7. pH titration study:

Figure S9. Effect of pH on the fluorescence intensity of CCF (10^{-5} M) in the absence of N₂H₄ (blackline) and in the presence of N₂H₄ (10^{-4} M, red line).

8. DFT study

Details	CCF	F1 moiety	F2 moiety
Calculation method	B3LYP	B3LYP	B3LYP
Basis set	6-31G**	6-31G**	6-31G**
E(CAM-B3LYP) (a.u.)	-1375.20	-651.50	-947.49
Charge, Multiplicity	0, 1	0, 1	0, 1
Solvent (CPCM)	Water	Water	Water

 Table S1. Details of the geometry optimization in Gaussian 09 program

TDDFT- Calculations

Table S2. Selected electronic excitation energies (eV), oscillator strengths (f), main configurations of the low-lying excited states of CPLC. The data were calculated by TDDFT//B3LYP/6-31G(d,p) based on the optimized ground state geometries.

Molecules	Electronic Transition	Excitation Energy ^a	f ^b	Composition ^c (%)
CCF	$S_0 \rightarrow S_4$	4.0781eV304.03 nm	0.5287	H -2→ L (68.7%)

^aOnly selected excited states were considered. The numbers in parentheses are the excitation energy in wavelength. ^bOscillator strength. ^cH stands for HOMO and L stands for LUMO.

Top view of energy optimized geometry:

Figure S10. Optimized structures of CCF, F1 and F2 moiety with their corresponding energies.

9. IR Spectroscopy Study

Figure S11. (A) IR spectrum of CCF and (B) IR spectrum of CCF + N_2H_4 , 3350 cm⁻¹ and 3200 cm⁻¹ indicates amide and O-H bond respectively.

10. NMR spectra of C2, C3

¹H NMR of C2 in DMSO-d₆:

Figure S12. ¹H NMR of C2 in DMSO-d₆ (400 MHz).

¹H NMR of C3 in DMSO-d₆:

Figure S13. ¹H NMR of C3 in DMSO- d_6 (400 MHz).

CHEMOSENSOR	ANALYTE	EXICTATION	Maximum EMISSION at
	N2H4	332 nm	452 nm
C1	N_2H_4	281 nm	372nm, 392nm
	N2H4	330 nm	372nm, 392nm
	N ₂ H ₄	360 nm	372nm, 392nm

11. Table S3. Comparative Fluorescence study of CCF with C1,C2,C3 in presence of N_2H_4

Figure S14. Comparative Fluorescence studies of (a) CCF $v_sN_2H_4$ (b) C1 vs N_2H_4 (c) C2 vs N_2H_4 (d) C3 vs N_2H_4 at 452 nm excitation at 332 nm, 280 nm, 330 nm, 360 nm respectively.

12. Quantitative analysis of hydrazine in button mushroom

Figure S15. Estimation of unknown concentration of hydrazine (blue line) in the gills extract of button mushroom from the standard fluorescence curve.