Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Zirconium Phosphate Supported-Silver Nanoparticles for Selective

Hydrogenation of Nitrobenzene into Azoxybenzene Compounds

Yuxi Qin^a, Yongjun Jiang^b, Xinjia Wei^a, Yuan Ma^a, Huiying Liao^a, Qingpo Peng^a, Sheng Dai^b,

Zhiqiang Wang^a,* Xiuge Zhao^{a,*}, and Zhenshan Hou^{a,c,*}

^a State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China. E-mail: houzhenshan@ecust.edu.cn; Tel: +86 21 64251686.

^bKey Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.

^cShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China

*Corresponding author: Email: houzhenshan@ecust.edu.cn

Fig. S2 HAADF-STEM images and particle size distributions of a) 0.5%Ag/ZrP-R, b) 1%Ag/ZrP-R, c) 2%Ag/ZrP-R, d) 4%Ag/ZrP-R and e) 1%Ag/ZrO₂-R. f) The appearance of catalysts.

Fig. S3 Quantitative analysis of py-IR spectra of the catalysts. The solid square points denote the ratio of B/L. B=Brønsted acid. L =Lewis acid.

					Sel. (%)			
Entry	Solvent	T(°C)	t(min)	Conv. (%) ^a	AN	AZB	AOB	NSB
1	MeOH	20	3	99	-	-	99	-
2 ^b	MeOH	20	30	-	-	-	-	-
3°	MeOH	20	30	-	-	-	-	-
4	THF	20	30	-	-	-	-	-
5	1,4-dioxane	20	30	-	-	-	-	-
6	CH ₃ CN	20	30	28	-	56	43	-
7	EtOH	20	30	57	-	3	96	-
8	H_2O	20	30	41	6	2	16	75

Table S1Catalytic performance of 1%Ag/ZrP-R in different solvents.

^aReaction conditions unless otherwise noted: 1.7 mmol NB, 2.5 mmol NaBH₄, 75 mg 1%Ag/ZrP-R, 5 mL solvent, stirring rate: 400 rpm. ^bReaction was carried out without catalyst. ^cZrP was used as a catalyst.

Fig. S4 Catalytic performance of 1%Ag/ZrP-R with varying mass of MeOH. Reaction conditions unless otherwise noted: 1.7 mmol NB, 2.5 mmol NaBH₄, 75 mg 1%Ag/ZrP-R, stirring rate: 400 rpm.

				_	Sel.(%)			
Entry	Reductants	T(°C)	t(min)	Conv.(%)	AN	AZB	AOB	NSB
1	IPA ^b	20	60	-	-	-	-	-
2	HCOOH ^c	20	10	-	-	-	-	-
3	H_2^{d}	120	240	-	-	-	-	-
4	Hydrazine	20	10	5	-	-	-	99
5	NaBH(AcO) ₃	20	30	-	-	-	-	-
6	TBABH ₄ ^e	20	20	78	-	18	82	-
7	NaBH ₄	20	3	99	-	1	99	-

Table S2 Catalytic performance of 1%Ag/ZrP-R using different reductants.^a

^aReaction conditions unless otherwise noted: 1.7 mmol NB, 2.5 mmol reductant, 75 mg 1%Ag/ZrP-R, 5 mL MeOH, stirring rate: 400 rpm. ^bIPA denoted isopropyl alcohol. ^c10 mmol HCOOH was used. ^d3 MPa H₂. ^cTBABH₄ denoted tetrabutylammonium borohydride.

Fig. S5 a) The FT-IR spectra and b) XRD patterns of fresh and used 1%Ag/ZrP-R, c) HRTEM images of 1%Ag/ZrP-R-S and d) FT-IR spectra of pyridine adsorbed on the fresh and spent catalysts. 1%Ag/ZrP-R-S denoted the spent catalyst after 10 catalytic cycles.

Fig. S6 The effect of base treatment on catalytic performance of 1%Ag/ZrP-R. The catalysts were pretreated with 0.1M methanol solution of NaOH or pyridine for 30 min and then washed with MeOH and H₂O for 3 times prior to reaction. Reaction conditions unless otherwise noted: 1.7 mmol NB, 2.5mmol NaBH₄, 75mg 1%Ag/ZrP-R, 5 mL MeOH, stirring rate: 400 rpm.

Fig. S7 Comparison of the 1%Ag/ZrP-R catalyst and reported catalytic systems in selective hydrogenation of NB into AOB. The reference numbers were shown in parenthesis.

Fig. S8 Kinetic analysis of the 1%Ag/ZrP-R-catalyzed reduction of NB with NaBH₄ or NaBD₄. a) NB conversion as a function of reaction time and b) kinetic isotope effect in NB hydrogenation with either NaBH₄ or NaBD₄ as a reductant. Reaction conditions: - 15°C, 1.7 mmol NB, 2.5 mmol NaBH₄ or NaBD₄, 75 mg 1%Ag/ZrP-R, 5 mL MeOH, stirring rate: 400 rpm.

atoms; white: H atoms; plum: P atoms; light green: Zr atoms; light blue: Ag atoms, respectively.

Figure S10. Calculated structure of (a)ZrP and (b-k) the key states within the NB selective hydrogenation to AOB at Ag₄-ZrP (001) surface. Red: O atoms; white: H atoms; grey: C atoms; blue: N atoms; pink: B atoms; purple: Na atoms; plum: P atoms; light green: Zr atoms; light blue: Ag atoms, respectively.

References

- 1. B. Lakshminarayana, A. K. Manna, G. Satyanarayana and C. Subrahmanyam, *Catal. Lett.*, 2020, **150**, 2309-2321.
- S. Krishnan, P. N. Patel, K. K. Balasubramanian and A. Chadha, *New J. Chem.*, 2021, 45, 1915-1923.
- 3. B. Paul, S. Vadivel, N. Yadav and S. S. Dhar, Catal. Commun., 2019, 124, 71-75.
- 4. M. N. Pahalagedara, L. R. Pahalagedara, J. He, R. Miao, B. Gottlieb, D. Rathnayake and S. L. Suib, *J. Catal.*, 2016, **336**, 41-48.
- 5. J.-X. Zhao, C.-Q. Chen, C.-H. Xing, Z.-F. Jiao, M.-T. Yu, B.-B. Mei, J. Yang, B.-
- Y. Zhang, Z. Jiang and Y. Qin, ACS Catal., 2020, 10, 2837-2844.
- B. Wu, T. Lin, R. Yang, M. Huang, H. Zhang, J. Li, F. Sun, F. Song, Z. Jiang, L. Zhong and Y. Sun, *Green Chem.*, 2021, 23, 4753-4761.