Supporting Information

Boosting Fast Electrochemical Kinetics of Na4Fe3(PO4)2(P2O7) *via* 3D Graphene Network as a Cathode Material for Potassium-ion Batteries

Kangsheng Shi, Wensheng Yang, Qiaodan Wu, Xingke Yang, Ruiya Zhao, Ziqiang She,

Quan Xie, Yunjun Ruan*

Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China.

*Corresponding author E-mail: yjruan@gzu.edu.cn (Yunjun Ruan)

Fig. S1. XRD pattern of NFPP@rGO calcined at 700 °C in the air.

The equation of NFPP@rGO 's pyrolysis reaction is as follows:

 $Na_4Fe_3(PO_4)_2(P_2O_7) + 3/4O_2 \rightarrow 4/3Na_3Fe_2(PO_4)_3 + 1/6Fe_2O_3$ (1)

$$C + O_2 \rightarrow CO_2 \tag{2}$$

Fig. S2. XPS spectra of (a) Na 1s and (b) P 2p.

Materials	Capacity	Capacity retention	Reference
$Na_4Fe_3(PO_4)_2(P_2$	119.1 mAh g ⁻¹ at	82.1% (500 cycles at 2	This work
O7)@rGO	0.1 C	C)	
$K_4[Mn_2Fe](PO_4)$	110 mAh g ⁻¹ at	83% (300 cycles at 1/3	1
2(P2O7)	0.05 C	C)	
KFePO ₄ /C	47 mAh g ⁻¹ at 10	84% (50 cycles at 10	2
	mA g ⁻¹	mA g ⁻¹)	
KVOPO ₄	115 mAh g ⁻¹ at 0.2	86.8% (100 cycles at	3
	С	0.5 C)	
KVP ₂ O ₇	60 mAh g ⁻¹ at 0.25	85% (100 cycles at	4
	С	0.25 C)	
KTiOPO4@C	$102 \text{ mAh } \text{g}^{-1} \text{ at } 5$	80% (50 cycles at 5	5
	mA g ⁻¹	mA g ⁻¹)	
KTiPO ₄ F/C	94 mAh g ⁻¹ at 0.05	97% (100 cycles at 2	6
	С	C)	-

Table S1. Electrochemical performance comparison of potassium ion batteries cathode.

Fig. S3. (a) TEM and (b) HRTEM images of NFPP@rGO after cycles.

Fig. S4. EDS elemental mapping of NFPP@rGO after cycles.

Fig. S5. XPS survey spectras of the initial, first charge, and first discharge of NFPP@rGO electrodes.

Fig. S6. Schematic illustration of the test steps for GITT experiment.

References:

- 1. J. Kang, H. Park, W. Ko, Y. Lee, J. Ahn, J.-K. Yoo, S. H. Song, H. Kim and J. Kim, *Journal of Materials Chemistry A*, 2021, **9**, 9898-9908.
- 2. I. Sultana, M. M. Rahman, S. Mateti, N. Sharma, S. Huang and Y. Chen, *Batteries & Supercaps*, 2020, **3**, 450-455.
- 3. J. Liao, Q. Hu, B. Che, X. Ding, F. Chen and C. Chen, *Journal of Materials Chemistry A*, 2019, 7, 15244-15251.
- 4. W. B. Park, S. C. Han, C. Park, S. U. Hong, U. Han, S. P. Singh, Y. H. Jung, D. Ahn, K. S. Sohn and M. Pyo, *Advanced Energy Materials*, 2018, **8**, 1703099.
- 5. R. Zhang, J. Huang, W. Deng, J. Bao, Y. Pan, S. Huang and C. F. Sun, *Angewandte Chemie*, 2019, **131**, 16626-16631.
- S. S. Fedotov, N. D. Luchinin, D. A. Aksyonov, A. V. Morozov, S. V. Ryazantsev, M. Gaboardi, J. R. Plaisier, K. J. Stevenson, A. M. Abakumov and E. V. Antipov, *Nature communications*, 2020, 11, 1484.