Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

-Supporting information-

Simultaneous facilitation of CO₂ adsorption and proton feeding in

Bi/Bi₂O₃ heterostructure nanosheets for enhanced electroreduction of

CO2 to formate in a wide potential window

Wenwen Wang ^a, Guangyu Ruan ^a, Xin Wang ^a, Chao Wu ^a, Qinian Wang ^{a,b*}

^a School of Resources and Environmental Engineering, Anhui University, Hefei,

Anhui, 230601, China

^b Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration,

Anhui University, Hefei, Anhui, 230601, China

* Corresponding Authors;

Phone: (86) 551 63861441; Fax: (86) 551 63861441; E-mail: wqn88@126.com (Q. Wang).

Address: School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China

Table of Contents

Table S1. Summary of the recent reports on ERCF using Bi-based catalysts.	Page S3				
Fig. S1. Influences of the potential range for the reduction of the as-prepared $\mathrm{Bi_2O_3}\mathrm{NS}$	Ss. Page S4				
Fig. S2. Influences of the scan number for the reduction of the as-prepared Bi_2O_3 NSs.	Page S5				
Fig. S3. Cycle-dependent LSV curves of Bi_2O_3 .	Page S6				
Fig. S4. Scheme of the electrolysis reactor for electrochemical experiments.	Page S7				
Fig. S5. XRD patterns of Bi, Bi ₂ O ₃ , and Bi/Bi ₂ O ₃ samples.	Page S8				
Fig. S6. In situ Raman spectra of Bi_2O_3 NSs before and after different LSV	scans in a				
CO ₂ -saturated 0.5 M KHCO ₃ solution.	Page S9				
Fig. S7. Tauc plots for the as-prepared samples.	Page S10				
Fig. S8. Schematic illustration of the charge transfer process in Bi/Bi ₂ O ₃ hybrid NSs.	Page S11				
Fig. S9. Current density of different gaseous products (H ₂ and CO).	Page S12				
Fig. S10. ERCF performance and XRD patterns of Bi ₂ O ₃ .	Page S13				
Fig. S11. ERCF performance of the Cu mesh at different cathode potentials.	Page S14				
Fig. S12. Ex situ Raman spectra of the Bi/Bi ₂ O ₃ hybrid NSs.	Page S15				
Fig. S13. CV curves of Bi NSs and Bi/Bi ₂ O ₃ hybrid NSs at different scan rates in the range of 80					
to 120 mV s ⁻² , recorded in a N ₂ -saturated 0.5 M KHCO ₃ solution.	Page S16				
Fig. S14. ESCA-normalised current density for formate production.	Page S17				
Fig. S15. CO ₂ adsorption isotherms of Bi NSs and Bi/Bi ₂ O ₃ hybrid NSs.	Page S18				
Fig. S16. Kinetic isotopic effect of H/D over Bi NSs and Bi/Bi ₂ O ₃ hybrid NSs catalyst	t. Page S19				
Fig. S17. HCO_3^- concentration dependence of $j_{formate}$ in the presence of Bi NSs and Bi/Bi ₂ O ₃					
hybrid NSs at -0.96 V.	Page S20				
Fig. S18. Formate productivity obtained in the presence of Bi NSs and Bi/Bi ₂ O ₃ hydrogenetic based on the presence of Bi NSs and	orid NSs in				
different electrolytes at -0.96 V.	Page S21				
Fig. S19. Nyquist plot of Bi NSs.	Page S22				
Fig. S20. Calculation models of the Bi slab and Bi/Bi ₂ O ₃ slab.	Page S23				
Fig. S21. Optimized geometric structure models of intermediates adsorbed on Bi and	d Bi/Bi ₂ O ₃ .				
	Page S24				
Fig. S22. The adsorption energy of H* on Bi and Bi/Bi ₂ O ₃ .	Page S25				
References	Page S26				

Catalysts	Electrolyte	FE _{formate} (%)	j _{formate} (mA cm ⁻²)	Potential window (mV; $FE_{\text{formate}} > 90 \%$)	Refs
Bi nanotubes	0.5 M KHCO ₃ -1.22 V vs. RHE	90	48	450	[1]
Bi ₂ O ₃ nanotubes	0.5 M KHCO3 -1.05 V vs. RHE	90	60	300	[2]
Bi ₂ O ₃ NSs@MCCM	0.1 M KHCO ₃ -1.355 V vs. RHE	90	17.7	300	[3]
Mesoporous Bi NSs	0.5 M KHCO ₃ -1.05 V vs. RHE	82	17	240	[4]
Bi ₂ O ₃ @C	0.5 M KHCO ₃ -0.9 V vs. RHE	92	7.5	100	[5]
Bi ₂ O ₃ @C-800	0.5 M KHCO ₃ -0.9 V vs. RHE	92.0	7.5	200	[6]
Bi MSs	0.1 M KHCO3 -1.0 V vs. RHE	96.2	5.08	500	[7]
Bi nanostructure	0.5 M KHCO ₃ -0.9 V vs. RHE	92	15	100	[8]
PD-Bil	0.5 M KHCO ₃ -0.9 V vs. RHE	91.4	7	100	[9]
Bi-MOF	0.5 M KHCO ₃ -0.9 V vs. RHE	92.2	4.5	300	[10]
Bi-nanosheets	0.5 M KHCO ₃ -0.9 V vs. RHE	92	10.5	300	[11]
SOR Bi@C NPs	0.5 M KHCO ₃ -0.99 V vs. RHE	95	10.5	440	[12]
Bi RDs	0.5 M KHCO3 -0.7 V vs. RHE	93.5	1.5	500	[13]
POD-Bi	0.5 M KHCO ₃ -1.16 V vs. RHE	95	52.8	300	[14]
Bi (btb)	0.5 M KHCO ₃ -0.97 V vs. RHE	95	5	200	[15]
Bi/Bi ₂ O ₃ -NSs	0.5 M KHCO ₃ -0.87 V vs. RHE	90.4	33	100	[16]
Bi ₂ S ₃ -Bi ₂ O ₃ NSs	0.1 M KHCO ₃ -1.1 V vs. RHE	93.8	17.1	400	[17]
Bi NSs	0.5 M KHCO ₃ -0.96 V vs. RHE	76.67	60.22	100	This work
Bi/Bi ₂ O ₃ NSs	0.5 M KHCO ₃ -0.96 V vs. RHE	96.45	70.27	800	This work

 Table S1. Summary of the recent reports on ERCF using Bi-based catalysts in a H-type cell.

Fig. S1. Influences of the potential range for the reduction of the as-prepared Bi₂O₃ NSs on the morphology and ERCF performance of the formed nanosheets. Scan number was 10, and the applied potential for ERCF was -0.96 V. The highest FE_{formate} and j_{formate} were obtained when the potential range was $0.46 \sim -0.86$ V.

Fig. S2. Influences of the scan number for the reduction of the as-prepared Bi₂O₃ NSs on the morphology and ERCF performance of the formed nanosheets. Potential range was $0.46 \sim -0.86$ V, and the applied potential for ERCF was -0.96 V. The highest FE_{formate} and j_{formate} was obtained when the scan number was 10.

Fig. S3. Cycle-dependent LSV curves of Bi_2O_3 in a CO_2 -saturated 0.5 M KHCO₃ solution. The potential range was $0.46 \sim -0.86$ V.

Fig. S4. Scheme of the self-assembled electrolysis reactor for electrochemical experiments. WE: working electrode, RE: reference electrode, CE: counter electrode.

Fig. S5. XRD patterns of Bi, Bi₂O₃, and Bi/Bi₂O₃ samples.

Fig. S6. In situ Raman spectra of Bi₂O₃ NSs before and after different LSV scans in a

CO₂-saturated 0.5 M KHCO₃ solution.

Fig. S7. Tauc plots for the as-prepared samples. The Eg of the as-prepared sample was obtained by fitting the Kubelka-Munk formula.¹⁸ The Eg values of Bi₂O₃ NSs and Bi/Bi₂O₃ hybrid NSs were 2.40 and 2.24 eV, respectively.

Fig. S8. Schematic illustration of the charge transfer process in Bi/Bi₂O₃ hybrid NSs.

Fig. S9. Current density of different gas products (H₂, CO).

Fig. S10. (a) ERCF performance of Bi_2O_3 at different cathode potentials and (b) XRD patterns of Bi_2O_3 sample before and after ERCF testing at -0.96 V.

Fig. S11. ERCF performance of the Cu mesh at different cathode potentials.

Fig. S12. Ex situ Raman spectra of the Bi/Bi₂O₃ hybrid NSs as a function of the applied potential.

Fig. S13. CV curves of (a) Bi NSs and (b) Bi/Bi₂O₃ hybrid NSs at different scan rates in the range of 40 to 120 mV s⁻², recorded in a N₂-saturated 0.5 M KHCO₃ solution. The plot of the current density at a specific potential against scan rate has a linear relationship, and the slope gives the electrochemical double-layer capacitance (C_{dl}).

The electrochemical active surface areas (ECSA) was calculated by the formula: ECSA = $C_{dl} \times A/C_0$, where C_{dl} is the specific capacitance of the fabricated catalysts, C_0 is the specific capacitance of a flat standard electrode with 1 cm² of real surface area ($C_0 = 40 \ \mu\text{F cm}^{-2} \ ^{19}$), and A is the geometric area. The ECSA of Bi NSs and Bi/Bi₂O₃ NSs hybrids were estimated to be 44.75 and 37.50 cm².

Fig. S14. ESCA-normalised current density for formate production.

Fig. S15. CO_2 adsorption isotherms of Bi NSs and Bi/Bi₂O₃ hybrid NSs.

Fig. S16. Kinetic isotopic effect of H/D over the Bi NSs and Bi/Bi_2O_3 hybrid NSs catalysts at -0.96 V.

Fig. S17. HCO_3^- concentration dependence of $j_{formate}$ in the presence of Bi NSs and Bi/Bi₂O₃ hybrid NSs at -0.96 V.

Fig. S18. Formate productivity obtained in the presence of Bi NSs and Bi/Bi_2O_3 hybrid NSs in different electrolytes at -0.96 V.

Fig. S19. Nyquist plots of Bi NSs.

Fig. S20. Calculation models of the Bi slab (a top view, b side view) and Bi/Bi₂O₃ slab (c top view; d side view). The models of the Bi and Bi/Bi₂O₃ were performed on Bi (110) facet and Bi₂O₃ (222) facet since they were the predominantly exposed crystal plane on Bi and Bi₂O₃ NSs, respectively.

Fig. S21. Optimized geometric structure models of the intermediates adsorbed on (a) Bi, and (b) Bi/Bi₂O₃.

Fig. S22. The adsorption energy of H^* on Bi and Bi/Bi_2O_3 .

Notes and references

- [1] F. Ke, Y. Jia, Y. F. Ji, P. Y. Kuang, B. C. Zhu, X. Y. Liu and J. G. Yu, Acs. Catal., 2020, 10, 358.
- [2] Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu,
- Z. Feng, Y. Li, W. Zhou and Y. Li, Nat. Commun., 2019, 10, 2807.
- [3] S. B. Liu, X. F. Lu, J. Xiao, X. Wang and X. W. Lou, *Angew. Chem.*, 2019, 58, 13828.
- [4] H. Yang, N. Han, J. Deng, J. Wu, Y. Wang, Y. Hu, P. Ding, Y. Li, Y. Li and J. Lu, Adv. Energy. Mater., 2018, 8, 1801536.
- [5] P. L. Deng, F. Yang, Z. T. Wang, S. H. Chen, Y. Z. Zhou, S. Zaman and B. Y. Xia, *Angew. Chem.*, 2020, 59, 10807.
- [6] P. L. Deng, F. Yang, Z. T. Wang, S. H. Chen, Y. Z. Zhou, S. Zaman and B. Y. Xia, Angew. Chem., 2020, 59, 10807.
- [7] Y. Zhang, R. Zhang, F. F. Chen, F. F. Zhang, Y. D. Liu, X. Y. Hao, H. K. Jin, X. H. Zhang, Z. M. Lu, H. Dong, F. Lu, W. H. Wang, H. Liu, H. Liu and Y. H. Cheng, *Appl. Catal. B.*, 2022, 322, 122127.
- [8] P. L. Lu, D. L. Gao, H. Y. He, Q. X. Wang, Z. J. Liu, S. Dipazir, M. L. Yuan, W. Y. Zu and G. J. Zhang, *Nanoscale*, 2019, 11, 7805.
- [9] Y. Wang, Y. Li, J. Liu, C. Dong, C. Xiao, L. Cheng, H. Jiang, H. Jiang and C. Li, Angew. Chem., 2021, 60, 7681.
- [10] P. L. Deng, F. Yang, Z. T. Wang, S. H. Chen, Y. Z. Zhou, S. Zaman and B. Y. Xia, *Angew. Chem.*, 2020, 59, 10807.

[11] F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T. S. Wu, Y. L. SOO, J. Masa, S. Mukerjee, Y. S. Jung, J. S. Qiu and Z. Sun, *Appl. Catal. B.*, 2020, 277, 119241.

- [12] P. Liu, H. L. Liu, S. Zhang, J. Wang and C. Wang, J. CO₂. Util., 2021, 51, 101643.
- [13] S. Liu, Y. Fan, Y. Wang, S. Jin, M. Hou, W. Zeng, K. Li, T. Jiang, L. Qin, Z. Yan,
- Z. Tao, X. Zheng, C. Shen, Z. Liu, T. Ahmad, K. Zhang and W. Chen, *Nano. Lett.*, 2022, 22, 9107.
- [14] H. Xie, T. Zhang, R. K. Xie, Z. F. Hou, X. C. Ji, Y. Y. Pang, S. Q. Chen, M. M.
- Titirici, H. M. Weng and G. L. Chai, Adv. Mater., 2021, 33, 2008373.
- [15] S. S. He, F. L. Ni, Y. J. Ji, L. Wang, Y. Z. Wen, H. P. Bai, G. J. Liu, Y. Zhang, Y. Y.
- Li, B. Zhang and H. S. Peng, Angew. Chem., 2018, 57, 16114.
- [16] P. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H. Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen. X. M. Hu, K. Daasbjerg, T. Skrydstrup and N. Lock, *Adv. Funct. Mater.*, 2020, 30, 1910408.
- [17] D. Wu, G. Huo, W. Chen, X. Z. Fu and J. L. Luo, *Appl. Catal. B.*, 2020, 271, 118957.
- [18] Z. Z. Zhang, Z. W. Pan, Y. F. Guo, P. K. Wong, X. J. Zhou, R. B. Bai, *Appl. Catal.B.*, 2020, 261, 118212.
- [19] P. F. Sui, C. Xu, M. N. Zhu, S. Liu, Q. Liu and J. L. Luo, Small, 2022, 18, 2105682.