Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Photochemical fabrication of defects abundant Pd/SnO₂ with promoted performance for dioctyl phthalate gas sensor

Yue Fu^{a,b}, Chaozhong Li^{a*}, Xue Chen^a, Yidan Liu^b, Haocheng Wu^b, Rongrong Jia^b, Liyi Shi^{b,c},

Dongqi Yu^{a*} and Lei Huang^{b*}

^a School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China.

^b Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China.

^c Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang 314006, P. R. China

*Corresponding authors. Fax: +86-21-66134726; Tel: +86-21-66134726.

E-mail addresses: useeu@163.com (D. Yu), leihuang@shu.edu.cn (L. Huang)

Supporting Tables

	1		
Sample	BET surface	Pore	Pore size (nm)
	area (m^2/g)	volume (cm^3/g)	
SnO ₂	40.7	0.01	6.5
5%Pd/SnO ₂	8.2	0.01	14.5
7.5%Pd/SnO ₂	8.3	0.02	15.2

 Table S1. The profiles of different materials.

Sample	Designed loading	Actual loading by ICP-MS
3%Pd/SnO ₂	3%	2.61%
5%Pd/SnO ₂	5%	4.53%
7.5%Pd/SnO ₂	7.5%	5.61%
10%Pd/SnO ₂	10%	7.34%

 Table S2. Designed loading amount and the estimated numbers by ICP-MS.

Supporting Figures

Fig. S1 The photos of (a) the sensing test setup; (b) the TS-64 table-top gas sensor aging platform; (c) the millet smoke alarm placement.

Fig. S2 Diagrammatic sketch of ceramic tube sensor device.

Fig. S3 DOP vapor generator.

Fig. S4 TEM image of (a) pure SnO₂; (b) 3 % Pd/SnO₂; (c) 7.5 % Pd/SnO₂; (d) 10 % Pd/SnO₂.

Fig. S5 N₂ adsorption-desorption isotherms curves of different samples.

Fig. S6 The response of DOP with the concentration of (a) 25 ppm and (b) 10 ppm at different temperatures. (c) The selectivity of different gases at 25 ppm.

Fig. S7 5%Pd/SnO₂ and 7.5%Pd/SnO₂ response-recovery curves to 10 ppm DOP at 150 °C.

Fig. S8 Repeatability of sensors in different batches at 240 °C.

Fig. S9 The selectivity of 5 % Pd/SnO₂ towards five gases (formaldehyde, ammonia, ethanol, methanol and DOP, 5 ppm) at a test temperature of 240 °C and an ambient humidity of 70 % RH.

Fig. S10 Comparison of response signals between 5%Pd/SnO₂ gas sensor (worked at 150 °C) and commercial smoke detector at different PVC cable heating temperatures: (a) 130 °C, (b) 155 °C, (c) 180 °C, (d) 205 °C and (e) 230 °C.