Supporting Information

Discovery of SrZn₂B₆O₁₂ with an Unprecedented Quadruple-layered Configuration

Xiangyu Long, Yan Lv, Xueyan Wu*

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, 830017 Urumqi, China.

Email: Wuxy90@xju.edu.cn

Fax: +86-991-8588883; Tel: +86-991-8583083.

Experimental Section

Crystal Growth. Single crystals of $SrZn_2B_6O_{12}$ were obtained by high-temperature spontaneous crystallization in the open air. All raw materials were purchased through commercial channels. SrF_2 , $SrCO_3$, ZnF_2 , $Zn(BF_4)_2$ and H_3BO_3 were weighed at the molar ratio of 2:3:10:1:30; Then ground in a mortar, and poured into a platinum crucible for heating. The mixture was slowly heated to 800 °C in 20 h and held for 10 h. Then, the mixture was cooled to 700, 500, 300 °C, and room temperature in 16, 130, 65, and 10 h, respectively.

Compounds Synthesis. Polycrystalline powders of $SrZn_2B_6O_{12}$ simple was synthesized via a solid-state reaction in air. We first mixed ZnO (3.26 g) and SrCO₃ (2.95 g) in alcohol (95%) and then ground them fully mixed (four times). The mixture was pressed into tablets, and then heated to 500 °C for 8 h. Then, mixed the as preparedmixture with B_2O_3 (4.18 g), followed with wet ground with alcohol by four times. The final mixture was pressed into tablets, and then heated to 750 °C for 8 h. With this, the polycrystalline samples of $SrZn_2B_6O_{12}$ were obtained (Figure S1). Although the sample has been calcined many times, there are still some extra peaks that are from the raw and intermediate materials of SrB_2O_4 and ZnB_2O_4 .

Single Crystal Structure Data Collection. The single crystal diffraction data were collected on a Bruker D8 Venture Single Crystal X-ray Diffractometer (Mo K α radiation with $\lambda = 0.71073$ Å) at 300 K. Data integration, cell refinement and absorption corrections of the data were completed by utilizing SAINT program.¹ The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques using the program suite SHELXL.² No missed symmetry was proved using PLATON program.³

Powder X-ray Diffraction Powder XRD patterns of polycrystalline materials were obtained on a Bruker D2 PHASER diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at room temperature. The 2 θ range was 5–70° with a step size of 0.02° and a fixed counting time of 1 s per step.

Thermal and Optical Performance Characterization. TG and DSC analyses were carried out on a simultaneous NETZSCH STA 449 F3 thermal analyzer instrument in a flowing N₂ atmosphere. The powder sample of $SrZn_2B_6O_{12}$ was placed in the Pt crucible, and heated from 40 to 1000 °C at a rate of 5 °C min⁻¹. The infrared spectroscopy was measured on a Shimadzu IR Affinity-1 Fourier transform infrared spectrometer in the 4000-400 cm⁻¹ range. The UV-Vis-NIR diffuse-reflectance spectroscopy data were recorded at 25 °C using a powder sample of $SrZn_2B_6O_{12}$ on a Shimadzu SolidSpec-3700DUV spectrophotometer.

Computational Methods. The electronic structure and optical properties of $SrZn_2B_6O_{12}$ are performed by using the DFT method implemented in the CASTEP module.⁴ The exchange-correlation potential is set to local density approximation (LDA), and the norm conservation pseudo potential (NCP) is used for all chemical elements.⁵ The valence electron configurations for diverse electron orbital pseudopotentials were Sr 4s² 4p⁶ 5s², Zn 3d¹⁰ 4s², B 2s² 2p¹ and O 2s² 2p⁴. The plane-wave energy cutoff was set at 830 eV. The Monkhorst-Pack k-point was sampled with a separation of less than 0.025 Å⁻¹, which was 7×7×4 for the Brillouin Zone (BZ). Other parameters and convergent criteria were set by the default values of the CASTEP code.

Formula	SrZn ₂ B ₆ O ₁₂
Formula weight	475.22
Temperature (K)	273.15
Wavelength (Å)	0.71073
Crystal system	triclinic
Space group	<i>P</i> -1
Unit cell dimension (Å, °)	a = 6.5206(4)
	b = 6.5408(4)
	c = 11.4026(7)
	$\alpha = 79.290(2)$
	$\beta = 83.151(2)$
	$\gamma = 61.048(2)$
Volume (Å ³)	417.89(5)
Ζ	2
Density (calcd) (g/cm ³)	3.777
Absorption coefficient (mm ⁻¹)	12.132
F (000)	448.0
The range for data collection (°)	3.638 to 54.928
Index ranges	$-7 \le h \le 8, -8 \le k \le 8, -14 \le l \le 14$
Reflections collected/unique	5598 / 1907 [R _{int} = 0.0456]
Completeness (%)	98.6
Refinement method	Full-matrix least-squares on F^2
Data/restrains/parameters	1907/0/191
Goodness-of-fit on F^2	1.104
Final <i>R</i> indices $[F_0^2 > 2\sigma(F_0^2)]^a$	$R_1 = 0.0359, wR_2 = 0.0778$
<i>R</i> indices (all data) ^a	$R_1 = 0.0439, wR_2 = 0.0828$

Table S1. Crystal data and structure refinement for $SrZn_2B_6O_{12}$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}| \text{ and } wR_{2} = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w F_{o}^{4}]^{1/2} \text{ for } F_{o}^{2} > 2\sigma (F_{o}^{2})$

Atom	x	У	Z	U(eq)	BVS
Sr1	-3240.6(9)	7100.2(8)	9083.3(4)	9.66(16)	2.30
Zn1	10146.3(11)	-2212.3(11)	4243.6(5)	10.67(18)	2.01
Zn2	4962.1(11)	-2849.8(11)	6025.7(5)	11.09(18)	1.83
B1	12487(11)	4408(10)	6293(6)	11.9(12)	3.03
B2	7265(11)	-174(11)	6261(6)	13.1(12)	2.96
B3	1594(11)	8472(10)	8778(5)	7.8(11)	3.04
B4	10852(11)	2597(10)	8142(5)	9.9(12)	3.11
B5	3325(11)	4371(10)	8357(5)	6.8(11)	3.02
B6	7692(10)	1478(10)	8176(5)	8.5(12)	3.11
01	5374(6)	2117(6)	8653(3)	8.3(7)	1.96
02	2375(7)	10089(6)	8538(3)	12.5(8)	2.08
03	13329(7)	5307(6)	7000(3)	9.4(7)	1.97
04	11252(6)	4125(6)	8706(3)	8.7(7)	2.12
05	12621(7)	4908(6)	5077(3)	11.7(8)	1.98
06	3307(7)	6152(6)	8986(3)	9.9(8)	2.17
07	8423(7)	3189(6)	8217(3)	10.2(8)	2.00
08	-741(7)	9128(6)	8797(3)	11.7(8)	2.12
09	7521(7)	230(6)	5019(3)	11.4(8)	1.91
O10	6539(7)	-1700(6)	6837(3)	13.1(8)	1.96
011	11498(7)	3021(6)	6791(3)	11.9(8)	2.11
012	7896(7)	1122(6)	6849(3)	11.7(8)	2.03

Table S2. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters ($Å^{2}\times10^{3}$) and BVS results for SrZn₂B₆O₁₂. U_{eq} is defined as 1/3 of the trace of the orthogonalised U tensor.

Atom 1	Atom 2	Bond length	Atom 1	Atom 2	Bond length
Sr1	O1 ²	2.794(3)	B1	011	1.359(7)
Sr1	O1 ³	2.909(3)	B2	09	1.396(7)
Sr1	$O2^1$	2.635(4)	B2	O10	1.338(7)
Sr1	O4 ⁴	2.775(4)	B2	O12	1.398(8)
Sr1	O4 ¹	2.654(4)	B3	O2	1.354(7)
Sr1	O6 ¹	2.627(4)	B3	O6	1.377(7)
Sr1	O6 ²	2.774(4)	B3	08	1.366(7)
Sr1	$O7^1$	2.587(4)	B4	O2 ⁹	1.462(7)
Sr1	08	2.516(4)	B4	O4	1.418(7)
Sr1	O10 ³	2.535(4)	B4	07	1.433(7)
Zn1	O5 ⁵	1.953(4)	B4	O11	1.558(7)
Zn1	09	1.945(4)	B5	01	1.445(7)
Zn1	O11 ⁶	1.976(4)	B5	O31	1.555(6)
Zn1	O12 ⁶	1.965(4)	B5	O4 ¹	1.439(7)
Zn2	O3 ⁷	2.070(4)	B5	O6	1.472(7)
Zn2	O5 ⁶	1.995(4)	B6	01	1.425(7)
Zn2	O9 ⁸	1.998(4)	B6	07	1.423(7)
Zn2	O10	1.927(4)	B6	O89	1.468(7)
B1	O3	1.375(8)	B6	O12	1.553(7)
B1	05	1.366(7)			

Table S3. Bond lengths for $SrZn_2B_6O_{12}$.

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
011	B1	05	119.0(6)	01	В5	O3 ²	111.2(4)
09	B2	O12	113.6(5)	01	В5	O6	110.3(5)
O10	B2	O9	123.3(6)	O4 ²	B5	01	109.2(4)
O10	B2	012	123.0(5)	O4 ²	В5	O3 ²	110.4(4)
02	B3	O6	115.5(5)	O4 ²	В5	O6	109.3(4)
02	B3	08	121.5(5)	O6	В5	O3 ²	106.5(4)
08	B3	O6	123.0(5)	01	B6	O8 ⁸	107.6(4)
O2 ⁸	B4	011	105.3(4)	01	B6	012	110.7(5)
O4	B4	O2 ⁸	113.8(5)	07	B6	01	113.5(4)
O4	B4	07	111.5(4)	07	B6	O8 ⁸	113.1(5)
O4	B4	011	106.7(4)	07	B6	012	107.1(4)
07	B4	O2 ⁸	112.3(4)	O8 ⁸	B6	012	104.3(4)
07	B4	011	106.6(4)				

Table S4. The O-B-O Angles for $SrZn_2B_6O_{12}$.

¹-1+X,1-Y,2-Z; ²-1+X,+Y,+Z; ³-1+X,1+Y,+Z; ⁴1-X,1-Y,2-Z; ⁵+X,-1+Y,+Z; ⁶2-X,-Y,1-Z; ⁷-1+X,-1+Y,+Z; ⁸1+X,-1+Y,+Z; ⁹1-X,-Y,1-Z; ¹⁰1+X,+Y,+Z; ¹¹1+X,1+Y,+Z; ¹²+X,1+Y,+Z

Figure S1. Experimental (red), calculated (black) XRD patterns of $SrZn_2B_6O_{12}$

Figure S2. TG–DSC curves of $SrZn_2B_6O_{12}$.

Figure S3. The layers composed of Sr-based polyhedra in $SrZn_2B_6O_{12}$.

Figure S4. The UV-Vis-NIR diffuse reflectance spectrum of SrZn₂B₆O₁₂.

Figure S5. Electronic band structure of $SrZn_2B_6O_{12}$ based on the results of GGA method.

References and Notes

- 1. SAINT, Version 7.60A, Bruker Analytical X-ray Instruments, Inc., Madison, WI, 2008.
- 2. Sheldrick, G. M. SHELXTL, version 6.12; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2001.
- 3. A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
- 4. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert, K. Refson, M. C. Payne, Z. *Kristallogr. Cryst. Mater.*, 2005, **220**, 567.
- (a) A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, *Phys. Rev. B*, 1990, 41, 1227; (b) J. S. Lin, A. Qteish, M. C. Payne, V. Heine, *Phys. Rev. B*, 1993, 47, 4174; (c) M. H. Lee, PhD. Thesis, The University of Cambridge 1996.