Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Development of Z-scheme bimetallic tungstate-supported nitrogen deficient g-

C₃N₄ heterojunction for the treatment of refractory pharmaceutical pollutants

H. Leelavathi ^a, R. Muralidharan ^b, N. Abirami ^a, R. Arulmozhi ^{a*}

^a Department of Chemistry, SRM Institute of Science and Technology,

Kattankulathur, Chengalpattu-603 203, Tamil Nadu, India.

^b Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and

Technical Sciences, Thandalam, Chennai-602 105, Tamil Nadu, India.

*arulmozr@srmist.edu.in

3. Results and Discussion

Fig. S1 PXRD spectrum of bulk-GCN.

Table S1 Lattice parameters and particle sizes of the fabricated samples.

Sample	a (Å)	b (Å)	c (Å)	Phase	Crystallite Size (nm)
NCW	4.67	5.69	4.94	Monoclinic	25.06
NCW/ND-GCN	4.70	5.71	4.96	Monoclinic	14.90
CZW	4.65	5.69	4.98	Monoclinic	35.19
CZW/ND-GCN	4.69	5.72	4.95	Monoclinic	27.16

Binding Energy	(C=N-C)	(N-H)	(C-NH ₂)
ND-GCN	398.87 eV	400.01 eV	401.38 eV
	58.78 %	31.65 %	9.57 %
bare-GCN	398.6 eV	399.5 eV	401.1 eV
	51.09 %	39.77 %	9.14%

Table S2 Covalent bond distribution of N 1s binding energy of ND-GCN and bare-GCN.

 Table S3 SEM-EDX elemental analysis of bulk-GCN and ND-GCN.

Name of the	Element	At (%)	Atomic ratio of
Sample			C/N
bulk-GCN	С	40.09	0.67
	Ν	59.91	
ND-GCN	С	47.67	0.91
	Ν	52.33	

Fig. S2 Energy dispersive spectra of (a) bulk-GCN; and (b) ND-GCN.

Fig. S3 Energy dispersive spectra of (a) NCW; (b) CZW; (c) NCW/ND-GCN; and (d) CZW/ND-GCN nanocomposite.

Fig. S4 SEM-EDX elemental mapping of NCW/ND-GCN nanocomposite.

Fig. S5 SEM-EDX elemental mapping of CZW/ND-GCN nanocomposite.

Table S4 The CB and VB edge potentials of fabricated samples estimated using the Mulliken
 electronegativity concept and Mott Schottky studies.

Concept	Conduction Band (E _{CB})			Valance Band (E _{VB})		
Mulliken electronegativity	ND-GCN	NCW	CZW	ND-GCN	NCW	CZW
	-1.17 eV	+0.35 eV	+0.41 eV	+1.63 eV	+2.58 eV	+2.56 eV
Mott Schottky Study	-1.16 eV	+0.29 eV	+0.39 eV	+1.64 eV	+2.52 eV	+2.54 eV

Fig. S6 The dye degradation rate (%) of blank, bulk-GCN, ND-GCN, NCW, CZW, NCW/ND-GCN and CZW/ND-GCN nanocomposite at various irradiation times (min) over (a) AZI; b) TC antibiotic drugs.

Scheme S1 Deciphering the impossibility of type-II heterojunction formation.

Table S5 Correlation of photocatalytic antibiotic degradation efficiency of current work with the several recently published bare tungstates and ND-GCN-based nanomaterials.

Name of the	Weight	Concentration	Source of	Irradiation	Efficiency of
Photocatalyst	of	of organic	visible light	time (min)	degradation
	Catalyst	pollutant			(%)
CuZnWO ₄ /rGO ⁵⁸	50 mg	100 mg L^{-1}	300 W Xe lamp	80 min	73 %
Ni-CoWO4 ⁵⁹	50 mg	5 ppm	300 W Xe lamp	300 W Xe lamp 150 min	
CuWO ₄ ⁶⁰	0.05 g	15 ppm	Fluorescent lamp-32 W	240 min	80 %
ND-g-C ₃ N ₄ ⁶¹	100 mg	30 mg L^{-1}	300 W Xe lamp	90 min	80.61 %
ND-g-C ₃ N ₄ ⁶²	50 mg	10 mg L^{-1}	300 W Metal halide	300 min	100 %
			lamp		
This work	50 mg	70 ml (Pharma effluent)	300 W Xe lamp, (Visible)	90 min	97.84 %
(CZW/ND-UCN)			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		