## **Optimization of the NH<sub>2</sub>-UiO-66@MoS<sub>2</sub> Heterostructure for Enhanced Photocatalytic Hydrogen Evolution Performance**

Zenghuan Ren, <sup>b</sup> Xinghao Zhang, <sup>a</sup> Xiaofan Shi, <sup>a</sup> Di Yang, <sup>a</sup> Mei-Hui Yu, <sup>a</sup> Wenjun

Zheng<sup>bc</sup> and Jijie Zhang\*a

<sup>a</sup> School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and

Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.

<sup>b</sup> Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry

(MOE), TKL of Metal and Molecule-based Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

<sup>c</sup> Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China.

\*Corresponding author. *E-mail address:* zhangjijie@nankai.edu.cn



Figure S1. SEM images of (a) C-NUM-0.05; (b) C-NUM-0.1; (c) C-NUM-0.2 and (d)

C-NUM-0.3.



Figure S2. PXRD pattern of (a)  $NH_2$ -UiO-66 and (b) simulated  $NH_2$ -UiO-66.



Fig. S3. Survey XPS spectra of C-NUM-0.2 and P-NUM



Figure S4. Hydrogen evolution performance of C-NUM-0.05; C-NUM-0.1; C-NUM-

0.2 and C-NUM-0.3.



Figure S5. SEM image of (a) C-NUM-0.2 and (b) P-NUM after photocatalytic reaction;(c) PXRD pattern of C-NUM-0.2 and P-NUM before and after photocatalytic reaction.



Figure S6. UV-vis spectra of C-NUM-0.05; C-NUM-0.1; C-NUM-0.2 and C-NUM-0.3.



Figure S7. PL spectra of C-NUM-0.05; C-NUM-0.1; C-NUM-0.2 and C-NUM-0.3.



Figure S8. EIS plots of C-NUM-0.05; C-NUM-0.1; C-NUM-0.2 and C-NUM-0.3.



Figure S9. I-t curves of MoS<sub>2</sub>; C-NUM-0.2; P-NUM and NH<sub>2</sub>-UiO-66(inset).



Figure S10. (a) TEM image of C-NUM-0.2/Pt, (b) HRTEM image of Pt nanoparticle,
(c) TEM image of C-NUM-0.2/MnO<sub>x</sub>, (d) EDS line scan result of C-NUM-0.2/MnO<sub>x</sub>

| Samples    | Zr (wt %) | Mo (wt %) |
|------------|-----------|-----------|
| C-NUM-0.05 | 10.96     | 28.15     |
| C-NUM-0.1  | 6.70      | 34.36     |
| C-NUM-0.2  | 3.71      | 38.53     |
| P-NUM      | 3.91      | 38.01     |
| C-NUM-0.3  | 2.72      | 36.39     |

Table S1. ICP-OES results for the contents of Zr and Mo.

| Samples                 | Adsorption (cm <sup>3</sup> /g) | Desorption (cm <sup>3</sup> /g) |
|-------------------------|---------------------------------|---------------------------------|
| NH <sub>2</sub> -UiO-66 | 0.080                           | 0.080                           |
| MoS <sub>2</sub>        | 0.144                           | 0.145                           |
| C-NUM-0.2               | 0.077                           | 0.077                           |
| P-NUM                   | 0.079                           | 0.081                           |

Table S2. BJH results of NH<sub>2</sub>-UiO-66, MoS<sub>2</sub>, C-NUM-0.2 and P-NUM.

|                                                             |                                     |                              |                                               |           | - |
|-------------------------------------------------------------|-------------------------------------|------------------------------|-----------------------------------------------|-----------|---|
| Sample                                                      | Test conditions                     | Light source                 | H <sub>2</sub> production rate                | Ref.      |   |
| C-NUM-0.2                                                   | H2O/Na2S/Na2SO3                     | Full spectrum                | 3.509 mmol g <sup>-1</sup> h <sup>-1</sup>    | This work |   |
| 1TMoS <sub>2</sub> /HCN-4                                   | TEOA                                | AM1.5G                       | 2724.2 mmol g <sup>-1</sup> h <sup>-1</sup>   | [1]       |   |
| CN/MoS <sub>2</sub> -1                                      | TEOA                                | λ≥400 nm                     | 441.3 µmol g <sup>-1</sup> h <sup>-1</sup>    | [2]       |   |
| ac-MoS <sub>x</sub> /TiO <sub>2</sub>                       | Ethanol/H <sub>2</sub> O            | 365 nm LED                   | 3.43 mmol h <sup>-1</sup> g <sup>-1</sup>     | [3]       |   |
| 1T-MoS <sub>2</sub> /MIL-125-NH <sub>2</sub>                | MeCN/TEA/H <sub>2</sub> O           | $\lambda \ge 420 \text{ nm}$ | 1454 µmol g <sup>-1</sup> h <sup>-1</sup>     | [4]       |   |
| MoS <sub>2</sub> -MoC@rGO/TiO <sub>2</sub>                  | CH <sub>3</sub> OH/H <sub>2</sub> O | UV light                     | 575 $\mu$ mol h <sup>-1</sup> g <sup>-1</sup> | [5]       |   |
| MoS <sub>2</sub> /ZnO                                       | H2O/Na2S/Na2SO3                     | Visible light                | 235 µmol g <sup>-1</sup> h <sup>-1</sup>      | [6]       |   |
| CdS/MoS <sub>2</sub>                                        | H2O/Na2S/Na2SO3                     | UV light                     | 5587 μmol g <sup>-1</sup> h <sup>-1</sup>     | [7]       |   |
| g-C <sub>3</sub> N <sub>4</sub> -MoS <sub>2</sub> -ZnNi-ZIF | TEOA                                | $\lambda \ge 420 \text{ nm}$ | 77.8 μmol g <sup>-1</sup> h <sup>-1</sup>     | [8]       |   |

 Table S3. Similar reported photocatalyst

| Samples                 | $\mathrm{R}_{1}\left(\Omega ight)$ | $\mathrm{R}_{2}\left(\Omega ight)$ |
|-------------------------|------------------------------------|------------------------------------|
| NH <sub>2</sub> -UiO-66 | 42.94                              | $1.27*10^{7}$                      |
| $MoS_2$                 | 42.53                              | 2456                               |
| C-NUM-0.2               | 35.27                              | 1479                               |
| P-NUM                   | 42.85                              | 2343                               |

Table S4. Parameters of equivalent circuit for the impedance data of NH<sub>2</sub>-UiO-66,

MoS<sub>2</sub>, C-NUM-0.2 and P-NUM.

Table S5. Parameters of equivalent circuit for the impedance data of C-NUM-0.05;

| Samples    | $\mathrm{R}_{1}\left(\Omega ight)$ | $\mathrm{R}_{2}\left(\Omega ight)$ |
|------------|------------------------------------|------------------------------------|
| C-NUM-0.05 | 42.68                              | 4434                               |
| C-NUM-0.1  | 35.29                              | 1897                               |
| C-NUM-0.2  | 35.27                              | 1479                               |
| C-NUM-0.3  | 38.63                              | 2538                               |

C-NUM-0.1; C-NUM-0.2 and C-NUM-0.3

## Reference

- [1] Y. Xiong, T. Liu, W. Liu, X. Wang, Y. Xue and J. Tian, *Int. J. Hydrogen Energy*, 2023, 48, 7284-7293.
- [2] Y. Xu, J. Ouyang, L. Zhang, H. Long, Y. Song and Y. Cui, *Chem. Phys. Lett.*, 2023, 814, 140331.
- [3] L. Li, D. Gao, F. Chen, X. Wang and H. Yu, Appl. Surf. Sci., 2023, 608,155173.

- [4] T. Nguyen, S. Kampouri, B. Valizadeh, W. Luo, D. Ongari, O. Planes, A. Zuttel, B. Smit and K. Stylianou, ACS Appl. Mater. Interfaces, 2018, 10, 30035-30039.
- [5] M. Pan, L. Gao, P. Wang, X. Wang and H. Yu, J. Alloys Compd., 2023, 939, 168721.
- [6] Y. Hunge, A. Yadav, S. Kang, S. Jun Lim and H. Kim, *J. Photochem. Photobiol.*, *A*, 2023, **434**, 114250.
- [7] L. Lin, S. Huang, Y. Zhu, B. Du, Z. Zhang, C. Chen, X. Wang and N. Zhang, *Dalton Trans.*, 2019, 48, 2715-2721.
- [8] N. Arif, Y. Z. Lin, K. Wang, Y. Dou, Y. Zhang, K. Li, S. Liu and F. T. Liu, RSC Adv., 2021, 11, 9048-9056.