Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

PAMAM-guanylthiourea conjugates mask furin's substrate binding site: Mechanistic insights from molecular docking and molecular dynamics studies assist the design of potential furin inhibitors

Chithra R Nair and K.G. Sreejalekshmi*

Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala Post,

Thiruvananthapuram, India - 695 547

*) Corresponding author: sreeja@iist.ac.in

Contents of Supporting Information

Figure S1: PAMAM GTU library3-5													
Figure furin	S2:	2D	interaction	diagram	of 	PAMAM	G0,	2,	3,	4	and	5	with 6
Figure furin	S3: 21	D sun	nmary of inte	eraction an	alysi	s results of	PAM	AM	G0,	2, 3	3, 4 ai	nd 5	with 7
Figure furin	S4: P	rotein	i-ligand RMS	SD plot of	PA	MAM G0,	1, 2,	3, 4	and	5 i	n cor	tact	with 8
Figure furin	S5: Ii	nterac	tion fraction	summary	of F	PAMAM G	0, 2,	3, 4	and	5 i	n cor	tact	with 9
Figure	S6 & S	S7: ¹ F	I and ¹³ C NM	IR spectra	of 1		•••••	•••••	••••		•••••		10
Figure	S8, S9	& S1	0: ¹ H, ¹³ C an	d DEPT-1	35 N	MR spectra	of 2 .					1	1-12
Figure	S11-S	15: ES	SI-MS spectra	ι								1	2-14

38

IJ

NH ||

NH S

'n `N´

N

N' H ĥ

J

NH

NH II

'n

NН

NH

29

N

33

ŅΗ

37

21

S

25

N

NH

`N´

s II

1 (G0 PheGTU)

`N´

14

NH ||

Ň

'n

ΝН

2 (G0 3,5-bis(CF3)PheGTU)

Ň

6

Figure S1: Designed PAMAM GTU library

Figure S2. 3D depiction of interaction of **(A)** G0 PAMAM with Asp154, Glu236, Pro256, Glu257, Asp258, Asp306 **(B)** 2 with Asp154, Asn192, Glu236, Gly255, Asp258, Asp264, Glu299, Asp301, Asp306, Tyr308 **(C)** 3 with Asp154, Asp191, Arg193, His194, Val231, Glu236, Gly255, Pro256, Asp258, Ser293, Asp306, Glu331 **(D)** 4 with Asp154, Asp191, Glu236, Pro256, Asp258, Asp264, Glu299, Asp306 **(E)** 5 with Glu236, Asp264, Asp258, Gly255, Glu257, Ala292, Asn295, Glu299, Asp306 residues of furin

Figure S3. 2D summary of interaction analysis results of (A) G0 PAMAM (B) 2 (C) 3 (D) 4 (E) 5 with furin

Figure S4: Protein-ligand RMSD plot of furin (A) G0 PAMAM (B) 1 (C) 2 (D) 3 (E) 4 (F) 5 in complex with furin.

🔳 H-bonds 🔲 Hydrophobic 📕 Ionic 🔳 Water bridges

Figure S5. Interaction fraction summary of (A) G0 PAMAM (B) 2 (C) 3 (D) 4 (E) 5 in contact with furin

Figure S6: ¹H NMR (400 MHz, Deuterium Oxide) of 1

Figure S7: ¹³C NMR (100 MHz, Deuterium Oxide) of 1

Figure S8: ¹H NMR (400 MHz, Deuterium Oxide) of 2

Figure S9: ¹³C NMR (100 MHz, Deuterium Oxide) of 2

Figure S10: DEPT-135 NMR of 2 (in D₂O)

Figure S11: ESI-MS Spectrum of 1 calcd mass (M+H)⁺, 728.3904; found, 728.3927

Figure S12: ESI-MS Spectrum of 2 calcd mass (M+H)⁺, 694.4293; found, 694.4283

Figure S13: ESI-MS Spectrum of 3 calcd mass $(M+H)^+$, 724.4399; found, 746.4419

Figure S14: ESI-MS Spectrum of 6 calcd mass (M+H)⁺, 708.4450; found, 708.4419

Figure S15: ESI-MS Spectrum of 7 calcd mass $(M+H)^+$, 739.4144; found, 739.4165