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Experimental Section

Synthesis of Zn nanosheets

All chemicals were used as received without further purification. Zn nanosheets
were fabricated by an electrochemical reduction method[1]. Typically, 0.03 M urea
and 0.002 M ZnCl, were dissolved in 50 mL deionized water followed by adjusting
the solution pH to 5. The obtained solution was transferred into a Teflon-lined
stainless-steel autoclave and kept at 100 °C for 24 h. After cooling, the precipitates
were collected and washed with deionized water/ethanol and then drying under
vacuum. The dried precipitates were further calcined at 450 °C for 1 h under air
atmosphere. The obtained ZnO nanosheets were then electrochemically reduced to Zn

nanosheets at -0.75 V (vs RHE) in Ar-bubbled 0.5 M NaHCOj; solution.
Electrochemical experiments

Electrochemical performance was investigated with a standard three-electrode
system at a CHI-760E electrochemical workstation with as-prepared catalyst coated
on a carbon cloth (CC), a graphite rod and an Ag/AgCl (saturated KCI) as the working,
the counter and the reference electrodes, respectively. All potentials were referenced
to the reversible hydrogen electrode (RHE) by following equation: FEryg
(V)=EAgagcit0.198+0.059xpH. The NORR tests were performed using an H-type
two-compartment electrochemical cell separated by a Nafion 211 membrane. Prior to
NORR test, all feeding gases were purified through two glass bubblers containing 4 M
KOH solution and the cathodic compartment was purged with Ar for at least 30 min
to remove residual oxygen[2]. During the potentiostatic testing, NO flow (99.9%, 20
mL min') was continuously fed to the cathodic compartment. After electrolysis for 1
h at various potentials, liquid and gas products were detected by colorimetry and gas
chromatography (GC, Shimadzu GC2010), respectively. The detailed procedures
were provided in our previous publications[3]. NH; yield rate and NH;-Faradaic
efficiency (FEnu3) were calculated by the following equation[4]:

NH; yield = (¢ x V) / (17 x t x A) (1)
FExpgz = (S X Fxex V) /(17 x Q) x 100% (2)
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where ¢ (ug mL™") is the measured NHj concentration, ¥ (mL) is the volume of
electrolyte in the cathode chamber, ¢ (s) is the electrolysis time and A is the surface
area of CC (1x1 cm?), F (96500 C mol ") is the Faraday constant, O (C) is the total
quantity of applied electricity.
Characterizations

Transmission electron microscopy (TEM) and high-resolution transmission
electron microscopy (HRTEM) were recorded on a Tecnai G> F20 microscope. X-ray
diffraction (XRD) pattern was collected on a Rigaku D/max 2400 diffractometer. X-
ray photoelectron spectroscopy (XPS) analysis was conducted on a PHI 5702
spectrometer. The UV-vis absorbance measurements were performed on a MAPADA
PS5 spectrophotometer.
Calculation details

Spin-polarized density functional theory (DFT) calculations were carried out on
a Cambridge sequential total energy package (CASTEP)[5]. The exchange-correlation
interactions were treated within the generalized gradient approximation (GGA) in the
form of the Perdew-Burke-Ernzerhof (PBE) functional. To ensure all atoms were fully
relaxed for each system, the convergence tolerance was set as 1.0x10- eV for energy
and 0.02 eV A! for force. A Gamma-point centered 3x3x1 k-mesh was adopted for
structural optimizations, and a plane wave cutoff was set to 400 eV. Zn (101) was
modeled by a 4x4 supercell, and a vacuum space of around 15 A was set along the z
direction to avoid the interaction between periodical images.

The free energies (AG, 298 K) for each reaction were given after correction[6]:

AG=AE +AZPE -TAS (3)

where AE is the adsorption energy, AZPE is the zero-point energy difference and TAS

is the entropy difference between the gas phase and adsorbed state.
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Fig. S1. TEM image of ZnO nanosheets.
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Fig. S2. (a) UV-vis absorption spectra of NH,* assays after incubated for 2 h at
ambient conditions. (b) Calibration curve used for the calculation of NH;j

concentrations.
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Fig. S3. (a) UV-vis absorption spectra of N,H, assays after incubated for 20 min at

ambient conditions. (b) Calibration curve used for calculation of N,Hy

concentrations.
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Fig. S4. NHj; yield rates and FEyy; of ZnO and Zn at -0.8 V.
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Fig. S5. Partial current densities of various products over Zn nanosheets after 1 h of
NORR electrolysis at different potentials.
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Fig. S6. Chronopotentiometric test of Zn nanosheets for 15 h at-0.8 V.
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Fig. S7. (a) TEM image and (b) XRD pattern of Zn nanosheets after stability test.
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Fig. S8. 'TH NMR spectra of ’'NH,* standard sample and those fed by ’'NO and Ar
after NORR electrolysis on Zn nanosheets at -0.8 V.
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Fig. S9. Schematic of NOH and NHO pathways on on Zn.



Table S1. Comparison of the optimum NHj yield rates and NH;-Faradic efficiency
(FEnm3) for recently reported state-of-the-art NORR electrocatalysts at ambient

conditions.
. Potential
NH3 yleld rate FENH3
Catalyst Electrolyte (V vs.
(umol h' cm2) (%)
RHE)
FeP/CC 0.2 M PBS 85.62 88.49 -0.2 [7]
Ni,P/CP 0.1 M HCI 33.47 76.9 -0.2 [8]
MoS,/GF 0.1 M HCI 99.6 76.6 0.1 [9]
a-B, C@TiO,/Ti 0.1 M Na,SO4 216.4 87.6 -0.9 [10]
MnO»_ 0.2 M Na,SOy4 9.9 82.8 -0.7 [11]
Coi/MoS, 0.5 M Na,SOq, 217.6 87.7 -0.5 [12]
CoP/TM 0.2 M Na,SO4 47.22 88.3 -0.2 [13]
Bi/C 0.1 M Na,SO4 273.8 93 -0.4 [14]
Bi powder 0.5 M K,SOq4 2.2 - -0.65 [15]
Nb;/BNC 0.1 M HCI 295.2 77.1 -0.6 [16]
This
Zn nanosheets 0.5 M Na,SO, 149.7 88.2 -0.8
work
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