Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Experimental Section

Synthesis of Zn nanosheets

All chemicals were used as received without further purification. Zn nanosheets were fabricated by an electrochemical reduction method[1]. Typically, 0.03 M urea and 0.002 M ZnCl₂ were dissolved in 50 mL deionized water followed by adjusting the solution pH to 5. The obtained solution was transferred into a Teflon-lined stainless-steel autoclave and kept at 100 °C for 24 h. After cooling, the precipitates were collected and washed with deionized water/ethanol and then drying under vacuum. The dried precipitates were further calcined at 450 °C for 1 h under air atmosphere. The obtained ZnO nanosheets were then electrochemically reduced to Zn nanosheets at -0.75 V (vs RHE) in Ar-bubbled 0.5 M NaHCO₃ solution.

Electrochemical experiments

Electrochemical performance was investigated with a standard three-electrode system at a CHI-760E electrochemical workstation with as-prepared catalyst coated on a carbon cloth (CC), a graphite rod and an Ag/AgCl (saturated KCl) as the working, the counter and the reference electrodes, respectively. All potentials were referenced to the reversible hydrogen electrode (RHE) by following equation: E_{RHE} (V)= $E_{\text{Ag/AgCl}}$ +0.198+0.059×pH. The NORR tests were performed using an H-type two-compartment electrochemical cell separated by a Nafion 211 membrane. Prior to NORR test, all feeding gases were purified through two glass bubblers containing 4 M KOH solution and the cathodic compartment was purged with Ar for at least 30 min to remove residual oxygen[2]. During the potentiostatic testing, NO flow (99.9%, 20 mL min⁻¹) was continuously fed to the cathodic compartment. After electrolysis for 1 h at various potentials, liquid and gas products were detected by colorimetry and gas chromatography (GC, Shimadzu GC2010), respectively. The detailed procedures were provided in our previous publications[3]. NH₃ yield rate and NH₃-Faradaic efficiency (FE_{NH3}) were calculated by the following equation[4]:

 $NH_3 \text{ yield} = (c \times V) / (17 \times t \times A)$ (1)

$$FE_{NH3} = (5 \times F \times c \times V) / (17 \times Q) \times 100\%$$
(2)

where c (µg mL⁻¹) is the measured NH₃ concentration, V (mL) is the volume of electrolyte in the cathode chamber, t (s) is the electrolysis time and A is the surface area of CC (1×1 cm²), F (96500 C mol⁻¹) is the Faraday constant, Q (C) is the total quantity of applied electricity.

Characterizations

Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were recorded on a Tecnai G² F20 microscope. X-ray diffraction (XRD) pattern was collected on a Rigaku D/max 2400 diffractometer. Xray photoelectron spectroscopy (XPS) analysis was conducted on a PHI 5702 spectrometer. The UV-vis absorbance measurements were performed on a MAPADA P5 spectrophotometer.

Calculation details

Spin-polarized density functional theory (DFT) calculations were carried out on a Cambridge sequential total energy package (CASTEP)[5]. The exchange-correlation interactions were treated within the generalized gradient approximation (GGA) in the form of the Perdew-Burke-Ernzerhof (PBE) functional. To ensure all atoms were fully relaxed for each system, the convergence tolerance was set as 1.0×10^{-5} eV for energy and 0.02 eV Å⁻¹ for force. A Gamma-point centered $3 \times 3 \times 1$ k-mesh was adopted for structural optimizations, and a plane wave cutoff was set to 400 eV. Zn (101) was modeled by a 4×4 supercell, and a vacuum space of around 15 Å was set along the z direction to avoid the interaction between periodical images.

The free energies (Δ G, 298 K) for each reaction were given after correction[6]:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{3}$$

where ΔE is the adsorption energy, ΔZPE is the zero-point energy difference and T ΔS is the entropy difference between the gas phase and adsorbed state.

Fig. S1. TEM image of ZnO nanosheets.

Fig. S2. (a) UV-vis absorption spectra of NH_4^+ assays after incubated for 2 h at ambient conditions. (b) Calibration curve used for the calculation of NH_3 concentrations.

Fig. S3. (a) UV-vis absorption spectra of N_2H_4 assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S4. $\rm NH_3$ yield rates and $\rm FE_{\rm NH3}$ of ZnO and Zn at -0.8 V.

Fig. S5. Partial current densities of various products over Zn nanosheets after 1 h of NORR electrolysis at different potentials.

Fig. S6. Chronopotentiometric test of Zn nanosheets for 15 h at -0.8 V.

Fig. S7. (a) TEM image and (b) XRD pattern of Zn nanosheets after stability test.

Fig. S8. ¹H NMR spectra of ¹⁵NH₄⁺ standard sample and those fed by ¹⁵NO and Ar after NORR electrolysis on Zn nanosheets at -0.8 V.

Fig. S9. Schematic of NOH and NHO pathways on on Zn.

Catalyst	Electrolyte	NH3 yield rate (μmol h ⁻¹ cm ⁻²)	FE _{NH3} (%)	Potential (V vs. RHE)	Ref.
FeP/CC	0.2 M PBS	85.62	88.49	-0.2	[7]
Ni ₂ P/CP	0.1 M HCl	33.47	76.9	-0.2	[8]
MoS ₂ /GF	0.1 M HCl	99.6	76.6	0.1	[9]
a-B _{2.6} C@TiO ₂ /Ti	0.1 M Na ₂ SO ₄	216.4	87.6	-0.9	[10]
MnO _{2-x}	0.2 M Na ₂ SO ₄	9.9	82.8	-0.7	[11]
Co_1/MoS_2	0.5 M Na ₂ SO ₄	217.6	87.7	-0.5	[12]
CoP/TM	0.2 M Na ₂ SO ₄	47.22	88.3	-0.2	[13]
Bi/C	0.1 M Na ₂ SO ₄	273.8	93	-0.4	[14]
Bi powder	0.5 M K ₂ SO ₄	2.2	-	-0.65	[15]
Nb ₁ /BNC	0.1 M HCl	295.2	77.1	-0.6	[16]
Zn nanosheets	0.5 M Na ₂ SO ₄	149.7	88.2	-0.8	This work

Table S1. Comparison of the optimum NH₃ yield rates and NH₃-Faradic efficiency (FE_{NH3}) for recently reported state-of-the-art NORR electrocatalysts at ambient conditions.

Supplementary references

- [1]. Q. Li, J. Wang, Y. Cheng and K. Chu, J. Energy Chem., 2021, 54, 318-322.
- [2]. L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin, L. Yue, T. Li, Q. Liu, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, X. Guo, D. Ma and X. Sun, *Angew. Chem. Int. Edit.*, 2021, 60, 25263-25268.
- [3]. Y. Luo, K. Chen, P. Shen, X. Li, X. Li, Y. Li and K. Chu, J. Colloid Interf. Sci., 2023, 629, 950-957.
- [4]. Y. Wang, C. Wang, M. Li, Y. Yu and B. Zhang, Chem. Soc. Rev., 2021, 50, 6720-6733.
- [5]. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567-570.
- [6]. B. He, P. Lv, D. Wu, X. Li, R. Zhu, K. Chu, D. Ma and Y. Jia, J. Mater. Chem. A, 2022, 10, 18690-18700.
- [7]. J. Liang, Q. Zhou, T. Mou, H. Chen, L. Yue, Y. Luo, Q. Liu, M. S. Hamdy, A. A. Alshehri, F. Gong and X. Sun, *Nano Res.*, 2022, 15, 4008-4013.
- [8]. T. Mou, J. Liang, Z. Ma, L. Zhang, Y. Lin, T. Li, Q. Liu, Y. Luo, Y. Liu, S. Gao, H. Zhao, A. M. Asiri, D. Ma and X. Sun, *J. Mater. Chem. A*, 2021, 9, 24268-24275.
- [9]. L. Zhang, J. Liang, Y. Wang, T. Mou, Y. Lin, L. Yue, T. Li, Q. Liu, Y. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, X. Guo, D. Ma and X. Sun, *Angew. Chem. Int. Ed.*, 2021, 133, 25467-25472.
- J. Liang, P. Liu, Q. Li, T. Li, L. Yue, Y. Luo, Q. Liu, N. Li, B. Tang, A. A. Alshehri, I. Shakir,
 P. O. Agboola, C. Sun and X. Sun, *Angew. Chem. Int. Ed.*, 2022, 61, e202202087.
- [11]. Z. Li, Z. Ma, J. Liang, Y. Ren, T. Li, S. Xu, Q. Liu, N. Li, B. Tang, Y. Liu, S. Gao, A. A. Alshehri, D. Ma, Y. Luo, Q. Wu and X. Sun, *Mater. Today Phys.*, 2022, 22, 100586.
- [12]. X. Li, K. Chen, X. Lu, D. Ma and K. Chu, Chem. Eng. J., 2023, 454, 140333.
- [13]. J. Liang, W.-F. Hu, B. Song, T. Mou, L. Zhang, Y. Luo, Q. Liu, A. A. Alshehri, M. S. Hamdy, L.-M. Yang and X. Sun, *Inorg. Chem. Front.*, 2022, 9, 1366-1372.
- [14]. Q. Liu, Y. Lin, L. Yue, J. Liang, L. Zhang, T. Li, Y. Luo, M. Liu, J. You, A. A. Alshehri, Q. Kong and X. Sun, *Nano Res.*, 2022, 15, 5032-5037.
- [15]. J. Choi, H.-L. Du, C. K. Nguyen, B. H. R. Suryanto, A. N. Simonov and D. R. MacFarlane, ACS Energy Lett., 2020, 5, 2095-2097.
- [16]. X. Peng, Y. Mi, H. Bao, Y. Liu, D. Qi, Y. Qiu, L. Zhuo, S. Zhao, J. Sun, X. Tang, J. Luo and X. Liu, *Nano Energy*, 2020, 78, 105321.