Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Multifunctional Cobalt Metal Organic Framework luminescent probe for efficient sensing of $Cr_2O_7^{2-}$, MnO_4^{-} and Nucleobases

Ritu Ladhi ^{[a],} Deepika Rani, ^[a,b], Monika Singh*^[a]

^{a]} Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, INDIA

^{b]} Department of Chemistry, Panjab University, Chandigarh, INDIA

*Corresponding author: monika@inst.ac.in

Contents

Section	Description	Page No.
Section S1	General information and crystallographic (Table S1)	S-3, S-4
Section S2	Characterization and crystallographic figures of Co-bpy: PXRD	S-5 to S-13
	profiles, FESEM, BET isotherm, TGA profiles and emission	
	spectra, Fluorescence intensity spectra related to sensing of	
	anions and different nucleobase by Co-bpy (Figures S1-S17)	
Section S3	Detection limit calculation, determination of Stern-Volmer	S-14 to S-18
	constant (Figures S18- S25)	
Section S4	UV-Vis spectral overlap, Lifetime measurements table and	S-19 to S-24
	Recyclability plot, images under UV lamp (Figures S26-S32,	
	Table S2 and S3), literature comparison (table S4 and S5)	
References		S-25 to S-26

Section S1: General information

Materials The reactants and solvents used in the procedure are obtained commercially from Sigma, CDH Fine chemicals and LobaChemei and used as purchased without any further purification

Physical Measurements FT-IR spectra were recorded on a PerkinElmer Spectrum I spectrometer with samples prepared as KBr pellets in the range of 4000-400 cm⁻¹. The solid state (DRS) and solution state UV-Vis spectra of compound and analyte were explored by UV/Vis spectrophotometer (Shimadzu UV-2600). The morphological studies were carried out by field emission scanning electron microscopy (FESEM) on a JEOL JSM-7600F system. TGA analysis was carried out using Perkin–Elmer Pyris 1 model on well ground samples in flowing nitrogen atmosphere at a heating rate of 10 °C/min. Emission spectra were recorded using an EDINBURGH instrument FS5 spectrophotometer. Time-resolved lifetime decay profiles were measured using photoluminescence Fluorolog 3-221 (Horiba Scientific) single photon counting controller. Powder X-ray diffraction analysis was carried out on a Bruker D8-Advance Eco Diffractometer using Ni-filtered Cu K α radiation at room temperature. The data were collected over the range of 5 ° < 2 θ < 80° with a step size of 0.01°. The BET nitrogen isotherm analysis was carried out on Quantachrome ASiQwin at 300 K.

Single-Crystal X-ray Data Collection and Refinements The structural analysis was carried out by Single crystal XRD on a CMOS based Bruker D8 Venture PHOTON 100 diffractometer equipped with a INCOATEC micro-focus source with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) operating at 50 kV and 30 mA. The crystal structures were solved by using SHELXS97 or SHELXT¹ and were refined using SHELXL97² through Olex2 suite.³All the hydrogen atoms were geometrically fixed and refined using the riding model. Multi-scan method was employed for absorption correction.

Parameters	Co (<i>bpy</i>) (HCOO) ₂		
Formula	C ₁₂ H ₁₀ Co N ₂ O ₄		
Formula weight (g)	305.15		
Temperature (K)	273.15		
Wavelength (Å)	0.71073		
Crystal system	Tetragonal		
Space group	P 4 ₁ 2 ₁ 2		
<i>a</i> (Å)	7.9826(3)		
<i>b</i> (Å)	7.9826(3)		
<i>c</i> (Å)	17.5851(9)		
α (°)	90.00		
β (°)	90.00		
γ (°)	90.00		
$V(Å^3)$	1120.56(8)		
Ζ	4		
$\theta(deg)$ range for data collecn	2.80-26.41		
dcalc (gcm ⁻³)	1.809		
μΜοΚα (cm ⁻¹)	1.543		
R1 (Ι>2σΙ)	0.0147		
wR2 (all)	0.0381		
CCDC No.	2203219		

Table S1: Crystallographic parameters of *Co-bpy*.

Figure S1. a) Asymmetric unit of **Co-***bpy* and b) Coordination environment around Co(II) center, (Color code: Cobalt, sky blue; carbon, grey; nitrogen, royal blue; oxygen, red; hydrogen, green).

Figure S2. PXRD profiles of Co-bpy (simulated and experimental patterns)

Figure S3. PXRD profiles of Co-bpy before and after immersing in water for 24hrs.

Figure S4. FESEM images of Co-*bpy* dispersed in a) DMF and b) H₂O.

Figure S5: N₂ adsorption Isotherm of Co-*bpy* at 77K.

Figure S6: TGA spectra Co-bpy.

Figure S7. Solid-state UV-Vis spectrum of Co-bpy.

Figure S8. Emission spectra of Co-bpy and bpy ligand.

Figure S9. Emission spectra of Co-bpy in presence of different anions (0.25 mM).

Figure S10. Bar diagram of emission intensity of **Co***-bpy* in presence of different anions (0.25 mM).

Figure S11. Emission spectra of Co-*bpy* in presence of Cytosine, Guanine, Thymine, Adenine and Uracil (10µM).

Figure S12. Bar diagram of emission intensity of **Co***-bpy* in presence of Cytosine, Guanine, Thymine, Adenine and Uracil (10µM).

Figure S13. Change in emission spectrum of **Co***-bpy* dispersed in water upon addition of a) Guanine b) Thymine and c) Uracil.

Figure S14. Change in emission spectrum of **Co-***bpy* dispersed in water upon addition of Adenine (only) and Adenine along with other nucleobases (A- Adenine, C-Cytosine, G-Guanine, T-Thymine, U-Uracil) 10µM each.

Figure S15. The fluorescence of Co-*bpy* at pH=1-11 solutions.

Figure S16. Change in emission spectrum of Co-*bpy* at pH=8 upon addition of (a) nucleobases $(10\mu M)$ and (b) oxo-anions (0.25 mM).

Figure S17. Change in emission spectrum of Co-*bpy* at pH=5 upon addition of (a) nucleobases $(10\mu M)$ and (b) oxo-anions (0.25 mM).

Section S3: Detection limit calculation, determination of Stern-Volmer constant and binding constant

Detection limit was calculated using the following equation:

Detection limit = $3\sigma/m$

Where ' σ ' is the calculated standard deviation from five blank measurements and 'm' is the slope obtained from the plot of fluorescence emission with increasing concentration of analytes.

Figure S18. Determination of detection limit through fitting of the linear region of fluorescence intensity of **Co**-*bpy* upon adding different concentration of Cr_2O_7 ²⁻ to it at λ emi = 450 nm (upon λ exc = 325 nm).

Figure S19. Determination of detection limit through fitting of the linear region of fluorescence intensity of **Co-***bpy* upon adding different concentration of MnO_4^- to it at $\lambda emi = 450 \text{ nm}$ (upon $\lambda exc = 325 \text{ nm}$).

Figure S20. Determination of detection limit through fitting of the linear region of fluorescence intensity of Co-*bpy* upon adding different concentration of Adenine to it at λ_{emi} = 450 nm (upon λ_{exc} = 325 nm).

Figure S21. Determination of detection limit through fitting of the linear region of fluorescence intensity of Co-*bpy* upon adding different concentration of Cytosine to it at λ_{emi} = 450 nm (upon λ_{exc} = 325 nm).

Figure S22. Determination of detection limit through fitting of the linear region of fluorescence intensity of Co-*bpy* upon adding different concentration of Guanine to it at λ_{emi} = 450 nm (upon λ_{exc} = 325 nm).

Figure S23. Determination of detection limit through fitting of the linear region of fluorescence intensity of Co-*bpy* upon adding different concentration of Thymine to it at λ_{emi} = 450 nm (upon λ_{exc} = 325 nm).

Figure S24. Determination of detection limit through fitting of the linear region of fluorescence intensity of Co-*bpy* upon adding different concentration of Uracil to it at $\lambda_{emi} = 450 \text{ nm}$ (upon $\lambda_{exc} = 325 \text{ nm}$).

Figure S25. Stern-Volmer (SV) plot for a) Guanine, b) Thymine and c) Uracil in Co-bpy.

Section S4: UV-*Vis* absorbance spectral overlap, Lifetime measurements and Recyclability plot

Figure S26. Lifetime decay profiles of Co-*bpy* before and after addition K₂Cr₂O₇ and KMnO₄.

	Co- <i>bpy</i> (1)	$1+K_2Cr_2O_7$	1+ KMnO ₄
$ au_1$ (ns)	2.09	1.76	1.70
α ₁	0.75	0.54	0.68
$ au_2$ (ns)	8.31	7.06	6.81
α2	0.24	0.45	0.31
$<\tau>(ns)$	5.57	5.85	5.01

Table S2. Average lifetimes of Co-bpy before and after addition K₂Cr₂O₇ and KMnO₄.

Figure S27. Lifetime decay profiles of Co-*bpy* before and after addition Adenine, Cytosine, Thymine, Guanine and Uracil.

Table S3. Average lifetimes of Co-bpy before and after addition Adenine, Cytosine,Thymine, Guanine and Uracil.

	Co- <i>bpy</i> (1)	1+Adenine	1+ Cytosine	1+ Thymine	1 + Guanine	1+ Uracil
τ_1 (ns)	2.09	2.09	2.09	2.09	2.10	2.05
α1	0.75	0.75	0.77	0.77	0.77	0.75
τ_2 (ns)	8.31	8.16	8.18	7.99	8.00	7.67
α2	0.24	0.24	0.23	0.23	0.23	0.25
<\tau > (ns)	5.57	5.46	5.38	5.27	5.28	5.15

Figure S28. Recyclability plot of **Co**-*bpy* for three consecutive cycles in presence of $K_2Cr_2O_7$ (blue bar represents emission intensity before addition of $K_2Cr_2O_7$ and green bar represents emission intensity after addition of $K_2Cr_2O_7$ (0.5mM).

Figure S29. Recyclability plot of Co-*bpy* for three consecutive cycles in presence of KMnO₄ (orange bar represents emission intensity before addition of KMnO₄ and purple bar represents emission intensity after addition of KMnO₄ (0.125 mM).

Figure S30. Recyclability plot of **Co**-*bpy* for three consecutive cycles in presence of Cytosine (brown bar represents emission intensity before addition of Cytosine and blue bar represents emission intensity after addition of Cytosine (500μ L, 26μ M)).

Figure S31. Sample vial images of **Co**-*bpy* in the absence and presence of 50 μ L (1 mM) concentration of different analytes [where (1) Co-*bpy*; (A) KI; (B) KCl; (C) KMnO₄; (D) K₂CO₃; (E) KNO₂; (F) KNO₃; (G) K₂Cr₂O₇; (H) K₂S₂O₄ and (I) KBr] after UV light illumination (λ = 365 nm).

Figure S32. Cuvette vial images of **Co***-bpy* in the absence 1 and presence of 50 μ L (1 mM) concentration of C- KMnO₄ and G- K₂Cr₂O₇ under UV light illumination (λ = 365 nm).

Table S4. Comparison of "Turn-Off" fluorescent property of Co-bpy MOF for sensing Oxoanions with literature data

Probe	Detection Limit (M)	Medium	Ref.
	MnO ₄ -		
$[Zn(modbc)_2]_n$	0.15×10^{-6}	DMF+H ₂ O	4
$\{[Zn_6Cl_6(2,2'dbpt)_3]\cdot 6H_2O\}_n$	6.14 × 10 ⁻⁶	(DMF: H ₂ O)(1:1)	5
$\{[Cd(ttpe)(H_2O)(ip)]. 4H_2O.DMAC\}_n$	0.34× 10 ⁻⁶	H ₂ O	6

[Ni ₂ (µ2OH)(azdc)(tpim)](NO ₃)·6DMA· 6MeOH	0.26×10^{-6}	H ₂ O	7
$[CdQ_2(H_2O)_2]$	141 × 10 ⁻⁹	H ₂ O	8
${Tb(L8)_{1.5}(H_2O)_{4.5}]_n H_2O}$	3.90×10^{-7}	H ₂ O	9
[Cd(L9)(L10)].H ₂ O	2.56 × 10 ⁻⁴	H ₂ O	10
JXUST-9	1.23 × 10 ⁻⁶	H ₂ O	11
Co- <i>bpy</i> MOF	9.5×10 ⁻⁷	H ₂ O	Present Work
	Cr ₂ O ₇ ²⁻		
$[Zn(modbc)_2]_n$	0.43 ×10 ⁻⁶	DMF+H ₂ O	4
$\{[Zn_6Cl_6(2,2'dbpt)_3]\cdot 6H_2O\}_n$	13.64 ×10 ⁻⁶	(DMF: H ₂ O)(1:1)	5
$\{[Cd(ttpe)(H_2O)(ip)].4H_2O.DMAC\}_n$	0.09 ×10 ⁻⁶	H ₂ O	6
[Ni ₂ (µ2OH)(azdc)(tpim)](NO ₃)·6DMA· 6MeOH	0.95×10 ⁻⁶	H ₂ O	7
$[CdQ_2(H_2O)_2]$	178 ×10-9	H ₂ O	8
${Eu(L3)(H_2O)(DMA)}_n$	6.05×10^{-5}	H ₂ O	12
[Cd(L9)(L10)]·H ₂ O	2.78×10^{-4}	H ₂ O	10
JXUST-9	1.23×10^{-6}	H ₂ O	11
Co- <i>bpy</i> MOF	2.6×10 ⁻⁶	H ₂ O	Present Work

Table S5. Comparison of "Turn-Off" fluorescent property of Co-bpy MOF for sensing Nucleobases with literature data

Probe	Detection Limit (M)	Medium	Ref.			
	Adenine					
Zn(II)-LCPs	4.83×10 ⁻⁶	H ₂ O	13			
L–Tryptophan-Cu ²⁺	0.046×10 ⁻⁶	H ₂ O	14			
GO–PANI	1.3×10^{-5}	H ₂ O	15			
N–GN	8.0×10 ⁻⁵	DMA	16			
2,3-diphenyl quinoxaline nanoparticles	0.7×10^{-6}	H ₂ O	17			
CoTPP	4.2×10 ⁻⁶	H ₂ O	18			
PDVTD-1	10×10 ⁻⁶	DMF	19			
Co-bpy MOF	3.1×10 ⁻⁶	H ₂ O	Present Work			
Guanine						
CDs	0.67×10^{-7}	H ₂ O	20			

CdTe nanoparticles	8×10 ⁻⁸	H ₂ O	21		
Cu ²⁺ -nuclear	1.9×10 ⁻⁶	H ₂ O	22		
Zn(II)-LCPs	5.97×10 ⁻⁶	H ₂ O	13		
Co-bpy MOF	3.5×10-6	H ₂ O	Present Work		
	Thymine				
bis-BODIPY derivatives	1.53×10 ⁻⁶	DMSO/H ₂ O	23		
PDVTD-1	10×10 ⁻⁶	H ₂ O	19		
Co-bpy MOF	3.0×10 ⁻⁶	H ₂ O	Present Work		
Cytosine					
PDVTD-1	0.5×10^{-6}	H ₂ O	19		
Co-bpy MOF	0.0969×10 ⁻⁶	H ₂ O	Present Work		
Uracil					
PDVTD-1	10×10 ⁻⁶	H ₂ O	19		
Co-bpy MOF	3×10 ⁻⁶	H ₂ O	Present Work		

References:

- Bruker Analytical X-ray Systems, SMART: Bruker Molecular Analysis Research Tool, Version 5.618; Bruker AXS: Madison, WI2000.
- 2. G. M. Sheldrick, "SAINT-NT, version 6.04." Bruker Analytical X-ray Systems: Madison, WI2001.
- Bruker Analytical X-ray Systems, SHELXTL-NT, Version 6.10; Bruker AXS: Madison, WI2000.
- 4. Y. Wu, D. Liu, M. Lin and J. Qian, RSC Adv., 2020, 10, 6022-6029.
- Y. Cao, Y. Zhang, L. W. Gu, X. M. Qin, H. Y. Li, H. D. Bian and F. P. Huang, New J. Chem., 2020, 44, 10681-10688.
- Z. X. Wang, H. X. Tian, M. Li, M. Zha, B. L. Li and B. Wu, *Appl. Organomet. Chem.*, 2020, 34, 5977.
- R. Goswami, G. Nilanjan, N. Seal, S. R. Dash, A. Tyagi and S. Neogi, ACS Appl. Mater. Interfaces. 2019, 11, 43, 40134–40150.
- D. B. Kanzariya, T. S. Khan, S. Das, P. Lama, R. Bandyopadhyay and T. K. Pal, Dalton Trans., 2022, 51, 7436-7454.
- 9. Z. L. Ma, J. Y. Shi, M. C. Wang and L. Tian, Dyes Pigm., 2021, 185, 108930.
- 10. G. H. Liu, Y. Li, J. Chi, N. Xu, X. L. Wang, H. Y. Lin, B. K. Chen and J. R. Li, *Dalton Trans.*, 2020, 49, 737-749.

- 11. Q. Q. He, S. L. Yao, T. F. Zheng, H. Xu, S. J. Liu, J. L. Chen, N. Li, H. R. Wen, *CrystEngComm.*, 2022, **24**, 1041-1048.
- 12. Y. T. Yan, W. Y. Zhang, F. Zhang, F. Cao, R. F. Yang, Y. Y. Wang and L. Hou, *Dalton Trans.*, 2018, 47, 1682-1692.
- X. Wang, J. Ma, N. Xu, Y. Wang, J. Sun and G. Liu, *CrystEngComm.*, 2021, 23, 4760.
- 14. R. Duan, C. Li, S. Liu, Z. F. Liu and Y. F. Li, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 152, 272-277.
- 15. S. N. Tayade, A. K. Tawade, P. Talele, S. S. Chavhan and K. K. K. Sharma, *Methods Appl. Fluoresc.*, 2019, 7, 045002.
- 16. J. Li, J. Jiang, H. Feng, Z. Xu, S. Tang, P. Deng and D. Qian, RSC adv., 2016, 6, 31565-31573.
- 17. S. B. Suryawanshi, G. R. Deshmukh, A. J. Bodake and S. R. Patil, *J. emerg. technol. innov. res.*, 2020, 7, 139–145.
- 18. S. Francis and L. Rajith, J. Fluoresc., 2021, 31, 577-586.
- 19. P. Bhanja, R. Gomes and A. Bhaumik, RSC Adv., 2015, 5, 74916-74923.
- 20. S. Pang, Y. Zhang, C. Wu and S. Feng, Sens. Actuators B: Chem., 2016, 222, 857– 863.
- 21. L. Li, Y. Lu, Y. Ding, F. Zhang and Y. Wang, Can. J. Chem., 2012, 90, 173-179.
- 22. Y. Cui, J. Yu and S. Feng, Talanta, 2014, 130, 536-541.
- 23. J. Bi, X. Ji, M. Guo, H. Guo and F. Yang, New J. Chem., 2019, 43, 5890-5896.