Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Influence of compositing conditions for Si-composite negative electrodes in sulfide-type all-solid-state lithium-ion batteries

Hiroshi Nagata*, Junji Akimoto, and Kunimitsu Kataoka

National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Corresponding Author *: Hiroshi Nagata - E-mail: nagata.hiroshi@aist.go.jp

1. Experimental

1.1 Preparation of the solid electrolyte and Si composite electrodes

1.1.0 Starting materials

Reagent-grade Li₂S (Mitsuwa Chem), P₂S₅ (Sigma Aldrich), LiI (Sigma Aldrich), Si (<100 nm nanopowder, Sigma Aldrich), and activated carbon (AC, Kansai Coke and Chemicals Co., Ltd.) were used as starting materials.

1.1.1 Preparation of Li₃PS₄-LiI as a solid electrolyte

 Li_3PS_4 -LiI (SE) was prepared by mechanical milling using a planetary ball-mill apparatus (Premium Line P-7, Fritsch Co.); a ZrO₂ pot and 160 g of ZrO₂ balls (4 mm diameter) were used in the mechanical milling treatment in Ar atmosphere to mix Li₂S, P₂S₅, and LiI (molar ratio = 3:1:2) with a rotational speed of 500 rpm for 10 h.¹

1.1.2 Preparation of Si composite samples for confirming Si-SE reaction

For confirming the Si–SE reaction, Si composite samples were prepared by mechanical milling using a planetary ball mill apparatus. Mechanical milling was performed in a ZrO₂ pot using ZrO₂ balls (ball diameter: 5 mm; total mass: 40 g) in Ar atmosphere. The preparation conditions are summarized in Table S1. Here, "L" and "H" in sample name mean low-speed treatment (100rpm) and high-speed treatment (370rpm), respectively.

Table S1. Ball milling conditions for Si composite samples for confirming the Si-SE reaction.

Samples	Component ratio (wt%)	Rotation speed / rpm	Treatment time / h	
Si-H	Si = 100	370	2	
(Si-SE)-H	Si:SE=50:40	370	2	
(Si-SE)-L	Si:SE=50:40	100	2	
(Si-AC)-H	Si:AC=50:10	370	2	

1.1.3 Preparation of Si composite electrodes

Si composite electrodes were prepared by mechanical milling using a planetary ball mill apparatus in a manner similar to the preparation of Si composite samples for confirming the Si–SE reaction. Mechanical milling was performed in a ZrO_2 pot using ZrO_2 balls (ball diameter: 5 mm; total mass: 40 g) in Ar atmosphere. The preparation conditions are summarized in Table S2.

	1st step			2nd step		
Samples	Component ratio (wt%)	Rotation speed / rpm	Treatment time / h	Component ratio (wt%)	Rotation speed / rpm	Treatment time / h
(Si-SE-AC)-H	Si:SE:AC=50:40:10	370	2	-	-	-
(Si-SE-AC)-L	Si:SE:AC=50:40:10	100	2	-	-	-
{(Si-SE)-AC}-HL	Si:SE=50:40	370	2	(Si:SE):AC=(50:40):10	100	2
{(Si-AC)-SE}-HL	Si:AC=50:10	370	2	(Si:AC):SE=(50:10):40	100	2
{(Si-SE)-SE-AC}-HL	Si:SE=50:20	370	2	(Si:SE):SE:AC=(50:20):20:10	100	2

Table S2. Ball milling conditions for Si composite electrodes.

2. Characterizations

The crystalline phases in the aforementioned Si composite samples and Si composite electrodes were determined by X-ray diffraction (XRD, Cu K α 1) analysis using SmartLab II instrument (Rigaku Co.). The XRD measurement was performed in a closed cell assembled in an Ar-filled glove box for evaluation under Ar atmosphere, as described in our previous studies.²

Si 2p X-ray photoelectron spectroscopy (XPS) analyses of the composite electrodes and raw materials were performed using a spectrometer (KRATOS Nova, KRATOS ANALYTICAL) with a monochromatic Al–K α source. The measurement samples were prepared in an Ar-filled glove box and inserted into the spectrometer using an unexposed transporter in vacuum, as described in our previous studies.² The binding energies of all spectra were calibrated to the binding energy (284.8 eV) of C 1s corresponding to adventitious carbon. Here, the energy split and area ratio of $2p_{3/2}$ and $2p_{1/2}$ were set to 0.6 eV and 0.5, respectively. After subtracting the Shirley background, the XPS spectra were evaluated by curve-fitting to a Lorentzian asymmetric (LA) line shape using CasaXPS V2.3.23 software.

The half-battery cell structure was as follows: Si composite electrode/SE as the solid electrolyte layer/Li-In alloy as the counter electrode. Similar structures were reported in previous studies.^{1,2} The Si composite electrode powder (4.0 mg) and SE powder (80 mg) were placed in a polycarbonate tube (inner diameter = 10 mm) and subjected to a pressure of 200 MPa applied by stainless steel rods, forming a two-layered pellet. The counter electrode of the Li-In alloy was formed by applying pressure less than 80 MPa. The Li foil and In foil were stacked on the surface of the two-layered pellet, and

thus, the foils were in contact with the SE. The molar ratio of Li/In in the negative electrode was 0.64. In Lix–In (x < 1), the potential of the Li-In alloys was constant at 0.62 V vs. Li.³ The resulting three-layered pellet was sandwiched between two stainless steel rods, which acted as current collectors. The half-battery cells were assembled in an Ar-filled glove box and placed in a sealed vessel. Their battery performances were evaluated in Ar atmosphere.

The battery performances of the half cells were evaluated at a constant current density of 0.25-1.9 mA cm⁻² at 25°C between -0.6 and 2.0 V using a charge–discharge measuring device (ACD-01, Asuka Electronics Co. Ltd.,).

Figure S1. X-ray diffraction (XRD) patterns of Si samples for confirming the Si–solid electrolyte (Si–SE) reaction (a) and Si composite electrodes (b).

Figure S2. Charge–discharge curves of Si composite electrodes at 0.64, 1.3, and 1.9 mA cm⁻² and 25°C between –0.6 and 2.0 V vs. Li-In. (a) (Si-SE-AC)-H, (b) (Si-SE-AC)-L, (c) {(Si-SE)-AC}-HL, (d) {(Si-AC)-SE}-HL, and (e) {(Si-SE)-SE-AC}-HL.

References

- 1. M. Suyama, A. Kato, A. Sakuda, A. Hayashi and M. Tatsumisago, *Electrochim. Acta*, 2018, **286**, 158–162.
- 2. H. Nagata, Y. Chikusa and J. Akimoto, J. Power Sources, 2020, 453, 227905.
- 3. N. Aotani, K. Iwamoto and S. Kondo, Solid State Ionics, 1996, 86-88, 877-882.