Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

A new cholesterol-naphthalimide conjugate: Aggregation and sensing of CNand CO₂ under different conditions

Rameez Raza, Chiranjit Pati, Nabajyoti Baildya and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, India. Email: <u>ghosh k2003@yahoo.co.in</u>; kumareshchem18@klyuniv.ac.in

Table S1. Results of gelation test for compound 1.

Solvent	1			
DMSO	S			
DMF	G (50 mg/mL) , (T_{gel} = 36 °C)			
CH ₃ CN	PS			
THF	S			
CHCl ₃	S			
МеОН	Ι			
Toluene	PS			
Benzene	PS			
DMSO-H ₂ O (1:1, v/v)	Р			
DMF-H ₂ O (1:1, v/v)	Р			
CH ₃ CN-H ₂ O (1:1, v/v)	Р			
DMF-MeOH (1:1, v/v)	G (10 mg/mL) , (T _{gel} = 54 °C)			
1,4-Dioxane	PS			
1,4-Dioxane-H ₂ O (1:1, v/v)	Р			
Hexane	Ι			
S = Solution; I = Insoluble; PS = Partially soluble; P = Precipitation, G= Gel				

Figure S1. Thermo-reversibility of gel 1 [c= 6.1 x 10⁻² M (for DMF gel) and c= 1.2 x 10⁻² M (for DMF-MeOH gel)].

Figure S2. Comparison of FTIR spectra of 1 in the (a) powder, (b) solution and (c) gel state in DMF. In the series, (d) indicates the FTIR of DMF solvent.

Figure S3. Comparison of FTIR spectra of 1 in (a) powder, (b) solution and (c) gel states in DMF-MeOH (1: 1, v/v). In the series, (d) indicates the FTIR of DMF solvent.

Figure S4: (A) Theoretical FTIR spectra of **1** and its aggregated form in DMF; (B) Reduced density gradient plots of **1**-aggregated form in (a) DMF, (b) DMF-CH₃OH; ADMP trajectories of optimized geometry of **1**-aggregated form in (c) DMF and in presence of CH₃OH.

Figure S5. ADMP trajectories in vacuum at different time intervals of aggregated 1 of the optimized geometries in different solvents.

Figure S6. (A) Changes in the gel state of 1 (c= 6.1 x 10⁻² M) in DMF upon addition of 1 equiv. amount of different anions (as tetrabutylammonium salt) after 15 min [from left to right: (a) CN⁻, (b) F⁻, (c) AcO⁻, (d) H₂PO₄⁻, (e) Cl⁻, (f) Br⁻, (g) I⁻, (h) HSO₄⁻, (i) NO³⁻, (j) S²⁻ and (k) n-Butylamine]; (B) Selectivity for CN⁻ in presence of all other anions (gel concentration was 1.2 x 10⁻² M).

Figure S7. SEM images: (a) F-induced DMF gel (b) CN⁻-induced DMF gel and CN⁻- induced DMF- MeOH (1:1, v/v) gel of 1.

Figure S8. Rheology study of CN-induced gel of 1; (a) amplitude sweep (at constant frequency of 1 Hz) and (b) frequency sweep (at constant 0.5% strain) experiments [Gel was prepared at mgc (c= 1.2 x 10⁻² M) and the experiments were carried out at 25 °C].

					-
Gel in Solvent	Critical strain (%)	Crossover (% strain)	G′ _{av} (Pa)*	G″ _{av} (Pa)*	G" _{av} /G' _{av}
CN⁻-induced gel in DMF-MeOH	0.74	2.03	63660	14070	0.22

Table S2. Summary of rheological properties of CN⁻-induced gel of 1.

*G'av and G"av values were calculated from frequency sweep data

Figure S9. Partial ¹H NMR (400 MHz) of 1 (c= 4.9 x 10⁻³ M) in the absence (a) and presence (b) of an equiv. amount of CN⁻ (c= 0.245 M) in CDCl₃.

Figure S10. Partial ¹H NMR (400 MHz) of 1 (c= 4.9 x 10⁻³ M) in the absence (a) and presence (b) of an equiv. amount of F⁻ (c= 0.245 M) in CDCl₃.

Figure S11. Partial ¹H NMR (400 MHz) of 1 (c= 4.9 x 10⁻³ M) in the absence (a) and presence (b) of an equiv. amount of AcO⁻ (c= 0.245 M) in CDCl₃.

Figure S12. (a) UV-Vis Job's plot of receptor **1** with CN ; (b) Binding constant curve from non-linear fitting UV-Vis titration data and (c) detection limit for CN^- ($c = 1.0 \times 10^{-3} \text{ M}$) with **1** ($c = 2.5.0 \times 10^{-5} \text{ M}$) using the data at 595 nm from UV-vis titration in DMF.

Figure S13. (a) UV-Vis Job's plot of receptor **1** with F; (b) Binding constant curve from non-linear fitting UV-Vis titration data and (c) detection limit for F^- ($c = 1.0 \times 10^{-3} \text{ M}$) with **1** ($c = 2.5.0 \times 10^{-5} \text{ M}$) using the data at 595 nm from UV-vis titration in DMF.

Figure S14. Change in absorbance of 1.CN⁻ ensemble [prepared from addition of 6 equiv. of CN⁻ ($c = 1.0 \ge 10^{-3}$) to 1 ($c = 2.50 \ge 10^{-5}$ M) in DMF] upon addition of H₂O.

Figure S15. Change in absorbance of **1**.F⁻ ensemble [prepared from addition of 6 equiv. of F^- ($c = 1.0 \times 10^{-3}$) to **1** ($c = 2.50 \times 10^{-5}$ M) in DMF] upon addition of H₂O.

Figure S16. Change in colour of the solution of 1 ($c = 2.50 \times 10^{-5} \text{ M}$) in DMF upon addition of 6 equiv. amounts of CN⁻, F⁻, AcO⁻ and H₂PO₄⁻ followed by addition of 2 equiv. amounts of Ca(ClO₄)₂.

Figure S17. Emission change ($\lambda_{exc} = 460 \text{ nm}$) in gel state of 1 ($c= 6.1 \times 10^{-2} \text{ M}$) in absence and presence of an equiv. amount of anions (CN⁻ and F⁻).

Figure S18. Change in emission of 1.CN⁻ ensemble [prepared from addition of 6 equiv. of CN⁻ ($c = 1.0 \text{ x } 10^{-3}$) to 1 ($c = 2.50 \text{ x } 10^{-5} \text{ M}$) in DMF] upon addition of H₂O ($\lambda_{exc} = 460 \text{ nm}$).

Figure S19. Change in absorbance of **1**.F⁻ ensemble [prepared from addition of 6 equiv. of F⁻ ($c = 1.0 \ge 10^{-3}$) to **1** ($c = 2.50 \ge 10^{-5}$ M) in DMF] upon addition of H₂O ($\lambda_{exc} = 460$ nm).

Figure S20. Change in emission of 1 ($c = 2.50 \text{ x } 10^{-5} \text{ M}$) in DMF upon addition of different anions ($c = 1.0 \text{ x } 10^{-3} \text{ M}$) ($\lambda_{exc} = 595 \text{ nm}$).

Figure S21. Change in absorbance of 1.CN⁻ ensemble [prepared from addition of 6 equiv. of CN⁻ ($c = 2.5 \times 10^{-3}$) to 1 ($c = 2.50 \times 10^{-5}$ M) in DMF] upon bubbling of CO₂.

Figure S22. Change in absorbance of 1.F⁻ ensemble [prepared from addition of 6 equiv. of F^- ($c = 2.5 \times 10^{-3}$) to 1 ($c = 2.50 \times 10^{-5}$ M) in DMF] upon bubbling of CO₂.

Figure S23. Pictorial representation of reversibility of gelator 1 in detection of CO₂ gas.

Figure S24. Detection of CO₂ gas by CN⁻- treated gel (DMF-MeOH; 1:1, v/v) of 1 (c= 1.2 x 10⁻² M).

Sl.	Structure	Medium	Mode of	Interference	Detection	Ref.
No.			interaction/		limits in	no.
			phase change		solution study	
1					1.5 10.6 1	1
1.		$DMSO/H_2O$	Deprotonation	-	1.5 x 10 ⁻⁶ M	I
		$(1:1 \sqrt{V})$,			
			gel-to-sol			
			transition			
	N					
2		DMSO/H-O	Deprotonation	F-	7.96 v 10 ⁻⁵ M	2
2.	S.N.N. LOTO	(1.1 v/v)	Deprotonation	ľ	7.90 X 10 W	2
	U HY H		,			
			gel-to-sol			
			transition			
3.	D II HO.	glycerol	Deprotonation	Al ³⁺ and	3.02 x 10 ⁻⁶ M	3
5.	N-N	giyeeror	, .	Fe ³⁺	5.02 X 10 WI	
			gel-to-gel			
			transition			
4.	Ň	THF	Deprotonation	-	1.12 x 10 ⁻⁵ M	4
	0		,			
	or n∕ ⁿ H					
			gel-to-sol			
			transition			
	$R = C_{16}H_{33}$					
	N					
5.	OC ₁₂ H ₂₅	DMSO/H ₂ O	Deprotonation		3.68 x 10 ⁻⁷ M	5
	C ₁₂ H ₂₅ O	(1:1 v/v)	, , , , , , , , , , , , , , , , , , ,			
	C ₁₂ H ₂₅ O					
			gel-to-sol			
			transition			
	Br					
6.	OC ₁₆ H ₃₃	n-	Deprotonation	S ²⁻	1.64 x 10 ⁻⁸ M	6
		$BuOH/H_2O$,			
	С С С С С С С С С С С С С С С С С С С	(9.1 V/V)	gel-to-sol			
			transition			

Table S3. Reported structures for cyanide sensing in gel phase through deprotonation mechanism.

7.	\bigtriangleup	DMSO	Deprotonation	F ⁻ , AcO ⁻	-	7
			, gel-to-sol transition			
8.		DMSO-H ₂ O	H-bonding followed by deprotonation, gel-to-gel transition	F ⁻ , AcO ⁻ , H ₂ PO ₄ ⁻	-	8
9.		DMF/H ₂ O (1/1, v/v)	Deprotonation	-	5.53 x 10 ⁻⁷ M	9
10.	$R = m \left(\begin{array}{c} 0 \\ HN-N \\ HN-N \\ H \\ H \\ H \end{array} \right) \left(\begin{array}{c} 0 \\ HN-N \\ H \\ $	DMF/MeOH (1/1, v/v)	Deprotonation gel-to-gel transition	-	6.69 x 10 ⁻⁸ M	Our work

Table S4. Reported structures for CO_2 sensing in gel-sol medium.

Sl. No.	Structure	Medium	Solvent	Ref. No.
13.		solution	CH ₃ CN	10
14.		gel and solution	DMSO	11

15.	$R_{2} \sim N^{-1} H_{1} = C_{15}H_{31} \qquad R_{2} = \sqrt{2}$	gel and solution	DMSO	12
16.	$R = -(CH_2)_2O(CH_2)_2O(C=0)CH_3$	gel and solution	DMSO	13.
17.	O N N N N N N N N N N N N N	solution	CH ₃ CN containing 1% DMSO	14.
18.	$m = 3^{\text{HN}} n^{\text{HN}}$	solution	DMSO	15.
19.		solution	CH ₃ CN	16.

¹H NMR (CDCl₃, 400MHz)

¹³C NMR (CDCl₃, 100MHz)

Mass spectrum of 1

References:

- 1. S. Sharma, M. Kumari, N. Singh, Soft Matter., 2020, 16, 6532–6538.
- 2. A. Panja, S. Ghosh and K. Ghosh, New J. Chem., 2019, 43, 10270–10277.
- H. Yao, J. Wang, S.-S. Song, Y.-Q. Fan, X.-W. Guan, Q. Zhou, T.-B. Wei, Q. Lin and Y.-M. Zhang, New J. Chem., 2018, 42, 18059–18065.
- S. K. Samanta, N. Dey, N. Kumari, D. Biswakarma and S. Bhattacharya, ACS Sustainable Chem. Eng., 2019, 7, 12304–12314.
- 5. B. Sarkar, P. Prabakaran, E. Prasad and R. L. Gardas, ACS Sustainable Chem. Eng., 2020, 8, 8327–8337.
- 6. J.-H. Hu, Z.-Y. Yin, K. Gui, Q.-Q. Fu, Y. Yao, X.-M. Fu and H.-X. Liu, Soft Matter, 2020, 16, 1029–1033.
- 7. K. Ghosh and C. Pati, Tetrahedron Lett., 2016, 57, 5469-5474.
- 8. S.-N. Li, B. Li, L.-X. Gong, Z.-R. Yu, Y. Feng, D. Jia, Y. Zhou, L.-C. Tang, Mater. Des., 2019,162, 162–170.
- 9. S. Ghosh, P. Jana and K. Ghosh, Anal. Methods, 2021, 13, 695–702.
- 10. M. Lee, S. Jo, D. Lee, Z. Xu and J. Yoon, Dyes Pigm., 2015, 120, 288-192.
- 11. X. Zhang, Y. Song, M. Liu, H. Li, H. Sun, M. Sun and H. Yu, Dyes Pigm., 2019, 160, 799-805.
- 12. X. Zhang, H. Mu, H. Li, Y. Zhang, M. An, X. Zhang, J. Yoon and H. Yu, *Sensors and Actuators B: Chemical*, 2018, **255**, 2764-2778.
- 13. X. Zhang, H. Li, H. Mu, Y. Liu, Y. Guan, J. Yoon and H. Yu, Dyes Pigm., 2017, 147, 40-49.
- 14. C. Pati, R. Raza and K. Ghosh, Spectrochim. Acta A, 2020, 229, 117910.
- 15. T. Gunnlaugsson, P. E. Kruger, P. Jensen, F. M Pfeffer and G.M.Hussey, Tetrahedron Lett., 2003, 44, 8909e13.
- Z. Guo, N.R. Song, J.H. Moon, M. Kim, E.J. Jun, J. Choi, J. Y. Lee, C. W. Bielawski, J. L. Sessler, and J. Yoon, *J Am Chem Soc.*, 2012, **134**, 17846e9.