Supporting information

Augmented and sustained oxygen reduction reaction activity of NiCo₂O₄ by the incorporation of Ag

Karuvatta Nubla[†], Vadakkanethu Sadasivan Anju[†], Aiswarya Sidharthan K[#], and

N. Sandhyarani[†]*

[†]Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India. * E-mail: <u>sandhya@nitc.ac.in</u>

#Department of Chemical Engineering, National Institute of Technology Calicut, Calicut, Kerala, India

S1: Synthesis of nickel oxide, cobalt oxide, and Ag/C Synthesis of nickel oxide

0.75 g of nickel chloride was dispersed in 30 mL absolute ethanol under ultra-sonication for 10 minutes. 0.0126 M Sodium hydroxide in 25 mL ethanol was added dropwise to the nickel chloride solution and stirred for 1 hour. Obtained precipitate was washed with ethanol thrice and kept for drying at 105 °C for 3 hours in the oven. The synthesized nickel hydroxide was then calcined at 250 °C for 3 hours [1].

Synthesis of cobalt oxide

Cobalt oxide was synthesized by making slight changes in the reported literature [2]. 0.75 g of Cobalt nitrate and 0.5 g of sodium dodecyl sulfate (SDS) were dissolved in 20 mL absolute ethanol and an equal volume of water under ultra-sonication for 15 minutes resulting in an opaque lavender blush suspension. The obtained suspension was transferred to Teflon lined stainless steel autoclave and heated at 180 °C for 5 hours. The residue, which is lilaceous, was washed thoroughly with water and ethanol and dried. The obtained product (cobaltous carbonate) has been calcined at 250 °C for 3 hours to obtain cobalt oxide.

Synthesis of Ag/C

Ag/C was prepared as per a reported procedure after minor modifications. Briefly, 7 mL 0.1 M AgNO₃ solution was added to 20 mL 0.1M ammonia solution (AgNO₃/ammonia solution). 5 mg carbon black was added to 10 mL ethylene glycol and sonicated separately. The carbon black solution was then added to the AgNO₃/ammonia solution. 0.4 mL 1M NaOH solution was added to the mixture and stirred at 120 °C for 3 hours. Later, the mixture was centrifuged, washed with DI, and dried for 12 h [3].

S2: MEA preparation

Two sets of the membrane electrode assembly (MEA) were prepared, the first with Pt: Ru/C as anode catalyst and Pt/C as cathode catalyst, and the second with Pt: Ru/C and Ag-NiCo₂O₄ as anode and cathode catalysts, respectively. The gas diffusion layer (GDL) was prepared by ultrasonically mixing carbon black (4 mg/cm²) in a 1:1 IPA/DI water mixture with a 5% Nafion binder. The slurry was then coated on PTFE (polytetrafluoroethylene) treated carbon cloth using a paintbrush. The catalyst inks for the anode and cathode were coated onto the previously arranged GDL using a paintbrush to load 3.5mg/cm² and 2 mg/cm² for the anode and cathode, respectively. After activating the Nafion 117 membrane in H₂O₂, H₂SO₄ followed by DI water; the MEAs were fabricated by inserting the pre-treated membrane between the anode and cathode catalyst through a hot-pressing process at 100°C and 76 kg/cm².

SEM images of Ag/C

Figure S1: FE-SEM images of Ag/C (A and B)

XRD of Ag/C, NiO and Co₃O₄

The crystal structures of Ag/C, nickel oxide, and cobalt oxide were studied by X-ray diffraction technique and given in Figure S2.

Figure S2: XRD pattern of (A) Ag/C (B) nickel oxide (C) cobalt oxide

The XRD spectrum of nickel oxide was displayed in Figure S2 (B). Well-resolved diffraction peaks at the two theta values of 37.07°, 43.1°, 62.5°, 75°, and 79° were observed, which are ascribed to the (111), (200), (220), (311), and (222) crystallographic planes of cubic nickel oxide (JCPDS#01-089-7130) [4,5]. XRD spectrum of cobalt oxide, given in Figure S2 (C), showed Bragg peaks at 18.9°, 31.2°, 36.8°, 38.4°, 44.6°, and 65° are attributed to the (111), (220), (311), (222), (400) and (440) planes of cubic cobalt oxide (JCPDS#01-080-1542) [6,7].

LSV of NiO, Co₃O₄, Ag/C and commercial Pt/C

The electrochemical ORR performances of the synthesized nickel oxide, cobalt oxide, and Ag/C have been evaluated in O_2 saturated 0.1 M KOH solution.

Figure S3: Linear sweep voltammogram at different RPM in O₂ saturated 0.1M KOH solution of (A) nickel oxide (B) cobalt oxide (C) Ag/C (D) commercial Pt/C

The LSV recorded at different electrode rotation rates is given in Figure S3 (A), (B), and (C), respectively. The LSV of the reference Pt/C is shown in Figure S3 (D).

Methanol tolerance and stability test-Ag/C at 1600 RPM

Figure S4: : Linear sweep voltammogram of Ag/C (A) before and after adding 1M methanol(B) before and after 2500 cycles of continuous CV scan in 0.1M O₂ saturated KOH.

To check the methanol tolerance of the Ag/C, LSV measurement has been performed @ 1600 RPM and shown in Figure S4 (A). After adding 1 M methanol, the ORR current density decreased to -1.8 mA/cm² (ΔI = 0.55 mA/cm²). An accelerated durability test (ADT) was done to evaluate the stability of the Ag/C and the LSV plots before and after the 2500 continuous scan is given in Figure S4 (B). After 2500 cycles, the Ag/C exhibited a slight reduction in current density (ΔI =0.17 mA/cm²).

Table S1: Comparison of the literature data for the ORR activity of various NiCo-based and Ag-based systems in O₂ saturated 0.1 M KOH electrolyte.

No.	Catalyst	Current density	Onset potential (V)	Reference
		@1600 RPM in		
		mA/cm ²		
1	Ag-NiCo ₂ O ₄	-4.7	0.82 (vs RHE)	Present
				work
2	NiCo ₂ S ₄ /CNT	-2.66	0.84 V (vs RHE)	[8]
3	NiCo ₂ O ₄ /rGO	About -3.6	-	[9]
4	NiCo ₂ S ₄ /rGO	About -4.7	0.88 V (vs RHE)	[9]
5	NiCo ₂ O ₄ @PTL	-3.5	-	[10]
6	N-NiCo ₂ O ₄ @C	-5.2	0.9 V (vs RHE)	[10]
7	NiCo ₂ O ₄ /N-G	-5.27	0.90 V (vs RHE)	[11]
8	NiCo ₂ O ₄ /CNT	-4.84	About 0.81 V (vs RHE)	[12]
9	Co ₃ O ₄ -NiCo ₂ O ₄ / N- rGO	-4.3	0.92 V (vs RHE)	[13]
10	NiCo ₂ O ₄ /CeO ₂	-6.39	0.84 V (vs RHE)	[14]
11	(Ni,Co)S ₂	-4.2	0.82 V (vs RHE)	[15]
12	NiCo ₂ O ₄ /N-CNF	-5.3	-	[16]
13	NiCo ₂ O ₄ /graphene	About -4.2	-0.12 V (vs SCE)	[17]
14	NiCo ₂ S ₄ @N/S-rGO	-4.3	-0.11 V (vs)	[18]
			Ag/AgCI)	
15	CeO ₂ /Ag	-5.33	0.96 V (vs RHE)	[19]

16	Mn ₃ O ₄ /Ag	-5.38	0.95 V (vs RHE)	[19]
17	Ag/MoS ₂	-6.16	0.9 V (vs RHE)	[20]
18	Ag/LaNiO ₃	-4.43	0.75 V (vs RHE)	[21]
19	GNP-Cu ₃ N/Ag	-4.86	0.904 V (vs RHE)	[22]

References

- C.L. Carnes, J. Stipp, K.J. Klabunde, J. Bonevich, Synthesis, Characterization, and Adsorption Studies of Nanocrystalline Copper Oxide and Nickel Oxide, Langmuir. 18 (2002) 1352–1359. https://doi.org/10.1021/la010701p.
- [2] Q. Yuanchun, Z. Yanbao, W. Zhishen, Preparation of cobalt oxide nanoparticles and cobalt powders by solvothermal process and their characterization, Mater. Chem. Phys. 110 (2008) 457–462. https://doi.org/10.1016/j.matchemphys.2008.03.001.
- [3] J. Liu, J. Liu, W. Song, F. Wang, Y. Song, The role of electronic interaction in the use of Ag and Mn₃O₄ hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts, J Mater Chem A. 2 (2014) 17477–17488. https://doi.org/10.1039/C4TA03937H.
- [4] N. Mohamed, C. Örnek, S. Timur, M. Ürgen, Anodic behavior of nickel in sub-molten KOH and its relevance for the production of electroactive nickel oxides, Surf. Interfaces. (2022) 101963. https://doi.org/10.1016/j.surfin.2022.101963
- [5] A.A. Khand, S.A. Lakho, A. Tahira, M. Ubaidullah, A.A. Alothman, K. Aljadoa, A. Nafady, Z.H. Ibupoto, Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures, (2021), 11(5), 1266; https://doi.org/10.3390/nano11051266
- [6] I.N. Qureshi, A. Tahira, K. Aljadoa, A. M. Alsalme, A. A. Alothman, A. Nafady, A. Karsy, Z. H. Ibupoto, Polyaniline as a sacrificing template for the synthesis of controlled Co₃O₄ nanoparticles for the sensitive and selective detection of methotrexate (MTX), J Mater Sci. 32 (2021) 15594–15604.
- [7] M. Usman, M. Adnan, M.T. Ahsan, S. Javed, M.S. Butt, M.A. Akram, In Situ Synthesis of a Polyaniline/ Fe–Ni Codoped Co₃O₄ Composite for the Electrode Material of Supercapacitors with Improved Cyclic Stability, ACS Omega. (2021) 1190–1196.

- [8] X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao, W. Hu, NiCo₂S₄ nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries, Nano Energy. 31 (2017) 541–550. https://doi.org/10.1016/j.nanoen.2016.12.008.
- [9] J. Wu, S. Dou, A. Shen, X. Wang, Z. Ma, C. Ouyang, S. Wang, One-step hydrothermal synthesis of NiCo₂S₄–rGO as an efficient electrocatalyst for the oxygen reduction reaction, J Mater Chem A. 2 (2014) 20990–20995. https://doi.org/10.1039/C4TA05159A.
- [10] Y. Ha, L. Shi, X. Yan, Z. Chen, Y. Li, W. Xu, R. Wu, Multifunctional Electrocatalysis on a Porous N-Doped NiCo₂O₄@C Nanonetwork, ACS Appl. Mater. Interfaces. 11 (2019) 45546–45553. https://doi.org/10.1021/acsami.9b13580.
- [11] Y. Ma, W. Shang, W. Yu, X. Chen, W. Xia, C. Wang, P. Tan, Synthesis of Ultrasmall NiCo₂O₄ Nanoparticle-Decorated N-Doped Graphene Nanosheets as an Effective Catalyst for Zn–Air Batteries, Energy Fuels. 35 (2021) 14188–14196. https://doi.org/10.1021/acs.energyfuels.1c02064.
- [12] C. Chen, H. Su, L.-N. Lu, Y.-S. Hong, Y. Chen, K. Xiao, T. Ouyang, Y. Qin, Z.-Q. Liu, Interfacing spinel NiCo₂O₄ and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis, Chem. Eng. J. 408 (2021) 127814. https://doi.org/10.1016/j.cej.2020.127814.
- [13] Z. Zhu, J. Zhang, X. Peng, Y. Liu, T. Cen, Z. Ye, D. Yuan, Co₃O₄ –NiCo₂O₄ Hybrid Nanoparticles Anchored on N-Doped Reduced Graphene Oxide Nanosheets as an Efficient Catalyst for Zn–Air Batteries, Energy Fuels. 35 (2021) 4550–4558. https://doi.org/10.1021/acs.energyfuels.0c04079.
- [14] J. Wang, X. Dong, J. Yang, L. Zhu, W. Zeng, J. Wang, Facile hydrothermal synthesis of 3D flower-like NiCo₂O₄/CeO₂ composite as effective oxygen reduction reaction catalyst, J. Mater. Sci. Mater. Electron. 31 (2020) 16600–16608. https://doi.org/10.1007/s10854-020-04215-8.
- [15] J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi, J. Wang, D. Gao, J. Wang, Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting, Nano-Micro Lett. 11 (2019) 2. https://doi.org/10.1007/s40820-018-0232-2.
- [16] A. Wang, Y. Hu, H. Wang, Y. Cheng, T. Thomas, R. Ma, J. Wang, Activating inverse spinel NiCo₂O₄ embedded in N-doped carbon nanofibers via Fe substitution for bifunctional oxygen electrocatalysis, Mater. Today Phys. 17 (2021) 100353. https://doi.org/10.1016/j.mtphys.2021.100353.

- [17] D.U. Lee, B.J. Kim, Z. Chen, One-pot synthesis of a mesoporous NiCo₂O₄ nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bifunctional electrocatalyst, J. Mater. Chem. A. 1 (2013) 4754. https://doi.org/10.1039/c3ta01402a.
- [18] Q. Liu, J. Jin, J. Zhang, NiCo₂S₄ @graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions, ACS Appl. Mater. Interfaces. 5 (2013) 5002–5008. https://doi.org/10.1021/am4007897.
- [19] W. Wang, J.-Q. Chen, Y.-R. Tao, S.-N. Zhu, Y.-X. Zhang, X.-C. Wu, Flowerlike Ag-Supported Ce-Doped Mn₃O₄ Nanosheet Heterostructure for a Highly Efficient Oxygen Reduction Reaction: Roles of Metal Oxides in Ag Surface States, ACS Catal. 9 (2019) 3498–3510. https://doi.org/10.1021/acscatal.8b04943.
- [20] S.V. Prabhakar Vattikuti, P.C. Nagajyothi, K.C. Devarayapalli, K. Yoo, N. Dang Nam, J. Shim, Hybrid Ag/MoS₂ nanosheets for efficient electrocatalytic oxygen reduction, Appl. Surf. Sci. 526 (2020) 146751. https://doi.org/10.1016/j.apsusc.2020.146751.
- [21] P. Li, C. Tian, W. Yang, W. Zhao, Z. Lü, LaNiO₃ modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries, Front. Mater. Sci. 13 (2019) 277–287. https://doi.org/10.1007/s11706-019-0474-z.
- [22] A. Ścigała, R. Szczęsny, P. Kamedulski, M. Trzcinski, E. Szłyk, Copper nitride/silver nanostructures synthesized via wet chemical reduction method for the oxygen reduction reaction, J. Nanoparticle Res. 25 (2023) 28. https://doi.org/10.1007/s11051-023-05671-z.