Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Sulfonated polybenzimidazoles containing phosphine oxide

units as proton exchange membranes

Gang Wang,^{*a} Shuai Yang,^a Bingyan Hua,^a Mingxia Lu,^a Jiaqi Kang,^a Wenshuai Tang,^a Hongliang Wei,^a Xianxian Liu,^a Lifeng Cui,^{*b} and Xiaodong Chen,^{*b}

^a College of Chemistry and Chemical Engineering, Henan University of Technology,
 Zhengzhou 450001, PR China
 ^b College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China

* Corresponding authors. Email: gwang198@gmail.com (G. Wang); lcui@usst.edu.cn (L. Cui); chenxd@zjblab.com (X. Chen)

Figure captions

Fig. S1 (a) 1 H NMR and (b) 13 C NMR spectra of BMPO.

Fig. S2 Scheme for the synthesis of PBI.

Fig. S3 Stress-strain curves of sPBI-PO60, 70, 80, and 90.

Fig. S4 Nyquist plots and corresponding fit curves of sPBI-PO90-PPA membranes at different temperature and simulated equivalent circuit diagram.

Fig. S5 (a) Proton conductivity and (b) Arrhenius plot of Nafion 117.

Table captions

Ionomers	sBMPO/ BMPO / DAB	$[\eta]^a$	Yield
	(molar ratio)	(dL/g)	(%)
PBI	0/100/100	1.51	95
sPBI-PO60	60/40/100	1.79	94
sPBI-PO70	70/30/100	2.03	96
sPBI-PO80	80/20/100	2.35	94
sPBI-PO90	90/10/100	2.41	94
sPBI-PO100	100/0/100	_b	94

Table S1 Feed ratios, intrinsic viscosity, and yields of polycondensation

^a The intrinsic viscosity of polymers in DMSO with 0.05 mol L⁻¹ LiBr at 30 °C.

^b Poor solubility in DMSO cannot test exact intrinsic viscosity.

Table S2 T	d ₅ , IEC, a	nd oxidative	stability of	f sPBI-PO	membranes.
------------	-------------------------	--------------	--------------	-----------	------------

T _{d5}		IEC (meq/g)		Thickness	Residue ^a	$\tau_1{}^b$
Ionomers	(°C)	calculated	measured	(µm)	(%)	(h)
sPBI-PO60	491	1.10	1.06	55	98	>48
sPBI-PO70	490	1.27	1.24	50	97	>48
sPBI-PO80	488	1.43	1.40	58	96	>48
sPBI-PO90	485	1.58	1.52	50	95	>48
sPBI-PO100	480	_ ^c	_ ^c	_ ^c	_c	_ ^c

^a Residual weight after 1 h soak in Fenton's reagent at 80 °C.

^b τ 1 means the time when dissolving the membrane completely at 80 °C.

^c Poor solubility in DMSO.

Table S3 S	Solubility of the	e PBI and sPBI-PO) ionomers.
	•		

Ionomers	DMSO	DMAC	NMP	DMF	Sulfolane	Methanol	water
PBI	+	±	±	±	±	_	_
sPBI-PO60	+	±	±	±	±	_	_
sPBI-PO70	+	±	±	±	±	_	_
sPBI-PO80	+	±	±	±	±	_	_
sPBI-PO90	+	±	±	±	±	_	_
sPBI-PO100	±	±	±	±	±	_	_

+: soluble when heated; \pm : partially dissolved or swollen when heated; -: insoluble when heated.

	Proton conductivity mS/cm		Mechanical properties			
Membranes			Tensile	Young's	Elongation	
	30 °C	80 °C	(MPa)	(GPa)	(%)	
sPBI-PO60	0.9	4.6	60.01	1.56	16.22	
sPBI-PO70	1.0	4.9	45.10	1.87	6.57	
sPBI-PO80	1.1	6.5	43.31	1.81	4.93	
sPBI-PO90	1.7	7.1	53.25	1.39	15.21	

Table S4 Proton conductivity and mechanical properties of sPBI-PO membranes.

 Table S5 PA uptake and Volume swelling ratio of membrane.

Membrane	PA doping level	PA uptake	Volume swelling ratio
	(mol/mol)	(%)	(%)
sPBI-PO60-PA	25.4	153.7	184.1
sPBI-PO70-PA	29.7	162.2	190.7
sPBI-PO80-PA	32.3	175.9	178.3
sPBI-PO90-PA	34.9	187.3	170.6