Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Diatomic-doped carbon layers decorated Na₃V₂(PO₄)₂F₃ as a durable

ultrahigh-stability cathode for sodium ion batteries

Xuntao Zhang,^[a] Hualing Tian,^[a] Yanhui Zhang,^[a] Yanjun Cai,^[a] Xiang Yao*^[a], Zhi Su**^[a,b]

[a] X. Zhang, H. Tian, Y. Zhang, Prof. Y. Cai, Prof. X. Yao, Prof. Z. Su College of Chemistry and Chemical Engineering, Xinjiang Key Laboratory of Energy Storage and Photoelectroctalytic Materials, Xinjiang Normal University, Urumqi, 830054, Xinjiang, P.R. China E-mail: yaoxiangxjnu@163.com; suzhixj@163.com

[b] Prof. Z. Su

Xinjiang Institute of Technology, 1 Xuefu Road, Akesu, 843100, Xinjiang, P.R. China E-mail: suzhixj@163.com

Fig. S1 XPS photoelectron spectra of NVPF@NC: the spectrum of (a) full XPS, (b) C 1s, (c) V 2p and (d) N 1s.

Fig. S2 XPS photoelectron spectra of NVPF@BC: the spectrum of (a) full XPS, (b) C 1s, (c) V 2p and (d) B 1s.

Fig. S3 EDS mapping images of NVPF@NC composite.

Fig. S4 EDS mapping images of NVPF@BC composite.

Fig. S5 Total number spectrum of distribution diagram of each atom in NVPF@NBC.

Elements	В	С	Ν	0	F	Na	Р	V	Total mass
wt%	2.21	15.68	2.42	27.38	6.98	11.13	11.39	22.81	100
Wt% sigma	0.64	0.26	0.26	0.34	0.15	0.13	0.14	0.33	1

Table. S1 Mass fraction table of each atom in NVPF@NBC.

Fig. S6 CV curves of the four cycles of (a) NVPF, (b) NVPF@NC and (c) NVPF@BC at 0.5 mV s⁻¹ between 2.0 and 4.3 V

Fig. S7 XRD pattern of the NVPF@NBC electrode after 100 cycles at 0.2 C.

Fig. S8 SEM image of the NVPF@NBC electrode after 100 cycles at 0.2C.

Fig. S9 Charge discharge curves of (a) NVPF (b) NVPF@NC (c) NVPF@NBC (d) NVPF@BC at different cycle periods at 5C.

Fig. S10 Cyclic voltammetry (a) of NVPF, (b) of NVPF@NBC, (c) first charge and discharge curves of NVPF and NVPF@NBC, (d) cyclic performance diagram of NVPF and NVPF@NBC at 0.2C, (e) rate performance of NVPF and NVPF@NBC at different rates, (f) AC impedance plots of NVPF and NVPF@NBC (g) cycling performance of NVPF and NVPF@NBC at 5 C.

Sample	Low-rate Capacity (mA h g ⁻ ¹)	High-rate Capacity (mA h g ⁻¹)	Capacity retention ratio (%)	Voltage Window (V)	References
NVPF@C-4	121.5 (0.1C)	99.2 (10C)	(1000cycles, 90.1% at 10C)	2.5-4.5	1
Na ₃ V ₂ (PO ₄) ₂ F ₃ /C	106.4 (0.2C)	94.1 (5C)	(500cycles, 92.4% at 1C)	2.5-4.2	2
NVPF-H@cPAN	116.2 (0.2C)	84.4 (5C)	(2000cycles, 85% at 5C)	2.0-4.5	3

Table. S2 Comparison of rate capability of NVPF@NBC in this work with polyanionic compounds of others reported in the literatures.

NVPF-Zr-0.02/NC	119.2 (0.5C)	98.1 (20C)	(1000cycles, 90.2% at 20C)	2.0-4.5	4
NVPF@C	109.5 (0.1C)	78.9 (30C)	(1000cycles, 87.8% at 20C)	2.0-4.3	5
BG-Na ₃ V ₂ (PO ₄) ₃ @C	111.6 (0.1C)	94.7 (10C)	(100cycles, 96.4% at 10C)	2.5-3.8	6
NVPF/C-PDPA	113.8 (0.5C)	98.0 (10C)	(800cycles, 95.8% at 10C)	3.0-4.6	7
Na ₃ V ₂ (PO ₄) ₃ /C+B	95.8 (0.2C)	90.3 (5C)	(40cycles, 98.3% at 0.2C)	2.7-4.0	8
Na ₃ V ₂ (PO ₄) ₂ F ₃ -SWCNT	117 (0.2C)	104.7 (5C)	(100cycles, 92.4% at 0.2C)	2.5-4.3	9
NVPF@NBC	127.2 (0.2C)	106.3 (5C)	(100cycles, 97.6% at 0.2C)	2.5-4.3	This work

References

1. W. X. Zhan, C. L. Fan, W. H. Zhang, G. D. Yi, H. Chen, S. C. Han and J. S. Liu, *International Journal of Energy Research.*, 2020, 8, 6608-6622.

2. F. Hu and X. Jiang, Inorganic Chemistry Communications., 2021, 129, 108653.

3. K. Liang, S. Wang, H. Zhao, X. Huang, Y. Ren, Z. He, J. Mao and J. Zheng, *Chemical Engineering Journal.*, 2022, 428, 131780.

4. C. Guo, J. Yang, Z. Cui, S. Qi, Q. Peng, W. Sun, L.-P. Lv, Y. Xu, Y. Wang and S. Chen, *Journal of Energy Chemistry.*, 2022, 65, 514-523.

5. Y. Li, X. Liang, G. Zhong, C. Wang, S. Wu, K. Xu and C. Yang, *ACS Applied Materials & Interfaces.*, 2020, 23, 25920-25929.

6. Q. Zeng, L. Luo, Z. Yu and L. Jiang, Solid State Ionics., 2018, 323, 92-96.

7. L.-L. Zhang, D. Ma, T. Li, J. Liu, X.-K. Ding, Y.-H. Huang and X.-L. Yang, ACS Applied Materials & Interfaces., 2018, 43, 36851-36859.

8. W. Shen, H. Li, C. Wang, Z. Li, Q. Xu, H. Liu and Y. Wang, *Journal of Materials Chemistry A.*, 2015, 29, 15190-15201.

9. S. Liu, L. Wang, J. Liu, M. Zhou, Q. Nian, Y. Feng, Z. Tao and L. Shao, *Journal of Materials Chemistry A*. 2019, 1, 248-256.