Electronic Supplementary Information For

An "AIE+ESIPT" mechanism-based benzothiazole derived fluorescent probe for the detection Hg²⁺ and its applications

Yanru Huang, Ying Li, Yang Li*, Keli Zhong, Lijun Tang*

College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013,

P.R. China

Scheme S1. Synthesis of probe L.

Figure S1. UV-Vis absorption spectra of compound HBT-CHO, probe L (10 μ M) and probe L+Hg²⁺ in DMF/H₂O (4/6, v/v, pH=6.8) solution.

Figure S2. Fluorescence spectra of compound HBT-CHO and probe $L+Hg^{2+}$ in DMF/H₂O (4/6, v/v, pH=6.8) solution.

Figure S3. Fluorescence spectra of compound HBT-CHO and probe $L+Hg^{2+}$ in DMF/H₂O (2/8, v/v, pH=7.3) solution.

Figure S4. (A) Fluorescence spectra after adding different concentrations of $Ag^+(0)$

M to 6×10^{-5} M) in the solution containing probe L (10 μ M) (λ_{ex} =380 nm, λ_{em} =550 nm); (B) Linear relationship between fluorescence intensity and Ag⁺ concentration (1×10⁻⁶ to 6×10⁻⁶ M) at 550nm (λ_{ex} =380 nm, λ_{em} =550 nm).

Figure S5. Variation of fluorescence intensity with time after adding Ag^+ (6×10⁻⁵ M) to probe L.

Figure S6. Fluorescence intensity changes of probe L toward Ag^+ and Hg^{2+} in DMF/H₂O (4/6, v/v, pH=6.8, NaCl=128 mM) solution.

Figure S7. Detection of Hg^{2+} in real water samples by probe L.

Figure S8. Linear relationship between fluorescence intensity of probe L (at 550 nm) and Hg^{2+} concentration in seafood samples.

Figure S9. ¹H NMR spectrum of compound HBT-CHO in DMSO-*d*₆.

Figure S10. ¹³C NMR spectrum of compound HBT-CHO in DMSO-*d*₆.

Figure S11. ¹H NMR spectrum of probe L in DMSO-*d*₆.

Figure S12. ¹³C NMR spectrum of probe L in DMSO- d_6 .

Figure S13. HRMS (ESI⁺) spectrum of probe L.

Figure S14. ¹H NMR spectrum of probe L+Hg²⁺ in DMSO-*d*₆.

Figure S15. ¹³C NMR spectrum of probe $L+Hg^{2+}$ in DMSO- d_6 .

Figure S16. HRMS (ESI⁺) spectrum of probe L+Hg²⁺.

		work.		
Ref	LOD	Solution system	Properties	pH range
43	6.5nM	PBS	ICT	6-10
44	21.2nM	EtOH:H ₂ O(1:1,v/v)	ICT	5-9
45	40nM	EtOH:H ₂ O(1:1,v/v)	PET-Off	5-7
46	4.157µM	CH ₃ OH:PBS(3:7,v/v)	AIE	7-9
This work	2.85nM	DMF:H ₂ O(4:6,v/v)	AIE+ESIPT	4-10

Table S1. Comparison of the properties of some reported fluorescent probes and this