6-gingerol derived semisynthetic analogs mitigates oxidative stress, reverses acrylamide induced neurotoxicity in zebrafish.

Tamilvelan Manjunathan ${ }^{\text {a }}$, Ajay Guru ${ }^{\text {b }}$, B. Haridevamuthu ${ }^{\text {c }}$, Rambabu dandela ${ }^{\text {d }}$, Jesu Arokiaraj ${ }^{\text {c }}$ and Pushparathinam Gopinath ${ }^{\text {* }}$
a. Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamil Nadu, India
b. Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
c. Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamil Nadu, India.
Departm
Table of Contents1. General information2
2. Experimental procedure and analytical data 3-12
3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of compounds
2,4,5,6,7,11,12,13,14,15,16,17,19,20,21,22,23,24,25, Int-1 and Int-2 13-32
4. Crystallographic data 33
5. DPPH, ABTS and NO assay 34-35

General experimental information:

All reactions were performed with the commercially available starting materials without any further purifications. 6-gingerol was isolated from raw ginger purchased from the local market (potheri). Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a Bruker BBFO ($500 \& 400 \mathrm{MHz}$) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to chloroform ($\delta=7.26$, singlet). ${ }^{1} \mathrm{H}$ NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), multiplet, (m), etc. Carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Bruker BBFO ($126 \& 100 \mathrm{MHz}$) spectrometer. ${ }^{13} \mathrm{C}$ NMR data are reported with the solvent peak $\left(\mathrm{CDCl}_{3}=77.16\right)$ as the internal standard. High-resolution mass spectral analysis (HRMS) was performed on Bruker Impact HD mass spectrometer. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.

SC-XRD: The quality single crystals suitable for SC-XRD experiments of all the four compounds were obtained from acetonitrile (ACN) solvent by the slow evaporation method. The single-crystal X-ray diffraction measurements were performed to determine the crystal structure of compounds 1 and 2 at 273 K using APEX3 (Bruker, 2016; Bruker D8 Venture photon 100 CMOS detector) diffractometer having graphite-monochromatized $(\mathrm{MoK} \alpha=$ $0.71073 \AA$). The X-ray generator was operated at 50 kV and 30 mA . A preliminary set of unit cell parameters and an orientation matrix were calculated from 36 frames, and the cell refinement was performed by SAINT-Plus (Bruker, 2016). An optimized strategy used for data collection consisted of different sets of φ and ω scans with 0.5° steps φ / ω. The data was collected with a time frame of 10 sec for the three components by setting the sample to detector distance fixed at 40 cm . The data points were corrected for Lorentzian, polarization, and absorption effects using SAINT-Plus and SADABS programs (Bruker, 2016). SHELXS97 (Sheldrick, 2018) was used for structure solution and full-matrix least-squares refinement on $\mathrm{F}^{2} .{ }^{1}$ The program(s) used to refine the molecular structures of compounds 1-3 is SHELXL 2018/3 (Sheldrick, 2018). All non-hydrogen atoms were refined by the anisotropic method and hydrogen atoms were either refined or placed in calculated positions. The molecular graphics of ORTEP diagrams were performed by XP software. The crystal symmetry of the components was cross-checked by running the .cif file through PLATON (Spek, 2020) software and notified that no additional symmetry was observed.

Isolation of compound 1 and synthesis of compounds 3,9 and 10.

Compound 1 was isolated from ginger and compounds $\mathbf{3 , 9}$ and $\mathbf{1 0}$ were synthesized and reported by our group. ${ }^{[1]}$
1.Manjunathan, T., Guru, A., Arokiaraj, J. and Gopinath, P., 2021. 6-Gingerol and Semisynthetic 6-Gingerdione Counteract Oxidative Stress Induced by ROS in Zebrafish. Chemistry \& Biodiversity, 18(12), p.e2100650.

Synthesis of compound 2

To a solution of 6-gingerol ($500 \mathrm{mg}, 1.7006 \mathrm{mmol}, 1 \mathrm{eq}$) in 7 ml of THF at $0^{\circ} \mathrm{C}$ was stirred with DDQ ($308 \mathrm{mg}, 1.3605,0.8 \mathrm{eq}$) was dissolved in 3 ml THF and added drop by drop then the solution was stirred for 30 min at $0^{\circ} \mathrm{C}$, then the reaction mixture was warmed to room temperature and stirred until complete consumption of the starting material was observed (TLC) after 3 h . Then the reaction mixture was extracted with water and ethyl acetate (3×25 mL). The organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under reduced pressure and the residue was purified over silica gel column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexane}$) afford desired product as a yellow syrup (330mg, 66 \%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.04$ (m, $1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.12-4.10(\mathrm{~m}$, $1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.41(\mathrm{~m}, 2 \mathrm{H})$, 1.39-1.24 (s, 6 H), $0.88(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.16, 148.77, 147.14, 144.08, 126.71, 124.11, 123.83, 115.11, 109.74, 68.19, 56.04, 46.58, 36.62, 31.88, 31.00, 25.31, 22.71, 14.13.

Synthesis of compound 4

To a solution of 6 -gingerdione ($100 \mathrm{mg}, 0.3424 \mathrm{mmol}, 1 \mathrm{eq}$) in 2 ml of THF at $0^{\circ} \mathrm{C}$ DDQ ($63 \mathrm{mg}, 0.2739 \mathrm{mmol}, 0.8 \mathrm{eq}$) was dissolved in 1 ml THF and added drop by drop then the solution was stirred for 30 min at $0^{\circ} \mathrm{C}$, then the reaction mixture was warmed to room temperature and stirred until complete consumption of the starting material was observed (TLC) after 3 h . Then the reaction mixture was extracted with water and ethyl acetate ($3 \times 25 \mathrm{~mL}$). The organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under reduced pressure and the residue was purified over silica gel column chromatography ($30 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 4 as a yellow solid ($33 \mathrm{mg}, 33 \%$), mp $78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.54(\mathrm{bs}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}$,
$J=2.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.36$ $-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.34$, 178.20, $147.80,146.92,139.97,127.87,122.75,120.71,114.94,109.61,100.27,56.08,40.24,31.61$, 25.47, 22.59, 14.07. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+291.1591$, found $[\mathrm{M}+\mathrm{H}]+291.1596$.

Retro aldol reaction with O-alkylation

To a suspended solution of NaH in THF, 6 -gingerol (1 eq) was added and stirred at at $0^{\circ} \mathrm{C}$ for 20 min . To this methyl iodide (1.5 eq) was added drop by drop then the solution allowed to stir 16 h at $60^{\circ} \mathrm{C}$. Then the reaction mixture was extracted with water and ethyl acetate (3 x 100 mL). The organic layers were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated under reduced pressure and the residue was purified over silica gel column chromatography to obtain the products 5, $\mathbf{6}$ and 7 in $37 \%, 14 \%$ and 8% yields respectively.

Compound 5

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.76(\mathrm{dd}, J=5.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}$, $2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.26, 148.94, 147.44, 133.70, 120.14, 111.77, 111.37, 56.00, 55.90, 45.52, 30.23, 29.46. (Yellow oil).

Compound 6

${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 6.84-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.09(\mathrm{dt}, J=$ $15.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.83(\mathrm{~m}, 2 \mathrm{H})$, 2.21-2.16 (m, 2H), 1.47-1.41 (m, 2H), 1.29-1.24 (m, 6H), $0.88(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(126 MHz, CDCl_{3}) $\delta 201.16,148.77,147.14,144.08,126.71,124.11,123.83,115.11$,
 $109.74,68.19,56.04,46.58,36.62,31.88,31.00,25.31$, 22.71, 14.13. (Yellow oil).

Compound 7

Pale yellow solid $\mathrm{mp}\left(63^{\circ} \mathrm{C}\right)^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-$ $6.69(\mathrm{~m}, 2 \mathrm{H}), 4.04-3.98(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{bs}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.74(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.5,162.6,148.9,147.5,133.4,120.1,111.7,111.3$, 67.6, 55.9, 49.4, 45.3, 36.4, 31.6, 29.2, 25.2, 22.5, 14.1.

Propargylation of 6-gingerol ${ }^{2}$

$\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{eq})$, Propargyl bromide (1.1 eq), DMF rt 5 h 84%,
2. de Lima Silva, W.C., Conti, R., de Almeida, L.C., Morais, P.A., Borges, K.B., Júnior, V.L., Costa-Lotufo, L.V. and de Souza Borges, W., 2020. Novel [6]-gingerol triazole derivatives and their antiproliferative potential against tumor cells. Current Topics in Medicinal Chemistry, 20(2), pp.161-169

Compound 11

To a solution of compound $8(300 \mathrm{mg}, 0.9036 \mathrm{mmol}, 1$ eq) in 7 ml of DMF to this $\mathrm{CuSO}_{4}(112 \mathrm{mg}, 0.4518 \mathrm{mmol}$, 0.5 eq), sodium ascorbate ($179 \mathrm{mg}, 0.9036 \mathrm{mmol}, 1 \mathrm{eq}$) and phenyl azide ($161 \mathrm{mg}, 1.3554 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and stirred at ambient condition till the consumption of starting material monitored by (TLC) for 30 min . To this saturated ammonium chloride (10 ml) was added and stirred for 10 min then the solution was extracted with EtOAc and concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($50 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 11 as a white solid (273 $\mathrm{mg}, 67 \%$), mp 67-69 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ ($\mathrm{s}, 1 \mathrm{H}$), 7.71 ($\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.51(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.67(\mathrm{~m}$, 2H), $5.33(\mathrm{~s}, 2 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.76-2.71(\mathrm{~m}, 2 \mathrm{H})$, $2.59-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.24(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 211.39,149.60,145.97,145.17,137.03,134.78,129.88$ (2C), 129.01, 121.29,
120.69 (2C), 120.26, 114.55, 112.27, 67.76, 63.29, 55.98, 49.44, 45.29, 36.55, 31.82, 29.22, 25.22, 22.69, 14.13. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+452.2544$, found $[\mathrm{M}+\mathrm{H}]+452.2537$.

Synthesis of compound 12

To a solution of compound $8(200 \mathrm{mg}, 0.6024 \mathrm{mmol}, 1$ eq) in 4 ml of DMF to this $\mathrm{CuSO}_{4}(75 \mathrm{mg}, 0.3012 \mathrm{mmol}$, 0.5 eq), sodium ascorbate ($120 \mathrm{mg}, 0.6024 \mathrm{mmol}, 1 \mathrm{eq}$) and OMe-phenyl azide (135 mg , $0.9036 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and stirred at ambient condition till the consumption of starting material monitored by (TLC) for 30 min . To this saturated ammonium chloride (10 ml) was added and stirred for 10 min then the solution was extracted with EtOAc and concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($50 \% \mathrm{EtOAc} /$ Hexanes) afford compound $\mathbf{1 2}$ as a pale brown solid (178 mg , 61%), mp $81-83{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.01(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H})$, $3.85(\mathrm{~s}, 6 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.75-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.33(\mathrm{~m}$, $2 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.41$, $160.04,149.58,145.99,134.75,130.45,130.34,122.35$ (2C), 121.52, 120.26, 114.90 (2C), $114.53,112.25,67.76,63.27,55.98,55.74,49.45,45.24,36.55,31.83,29.23,25.23,22.69$, 14.06. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]+482.2649$, found $[\mathrm{M}+\mathrm{H}]$ +482.2646.

Synthesis of compound 13

To a solution of compound 8 ($200 \mathrm{mg}, 0.6024 \mathrm{mmol}, 1$ eq) in 4 ml of DMF to this $\mathrm{CuSO}_{4}(75 \mathrm{mg}, 0.3012 \mathrm{mmol}$, 0.5 eq), sodium ascorbate ($120 \mathrm{mg}, 0.6024 \mathrm{mmol}, 1 \mathrm{eq}$) and Cl-phenyl azide ($140 \mathrm{mg}, 0.9036 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and stirred at ambient condition till the consumption of starting material monitored by (TLC) for 30 min . To this saturated ammonium chloride (10 ml) was added and stirred for 10 min then the solution was extracted with EtOAc and concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($50 \% \mathrm{EtOAc} /$ Hexanes) afford compound $\mathbf{1 3}$ as a yellow solid ($145 \mathrm{mg}, 50 \%$), mp $75-77^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}$, 2H), $4.05-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 3 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.45$
$(\mathrm{m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.38$, $149.60,145.95,145.54,135.55,134.85,134.76,130.07$ (2C), 121.84 (2C), 121.14, 120.27, $114.49,112.28,67.77,63.28,55.99,49.45,45.29,36.56,31.83,29.23,25.24,22.70,14.10$. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+486.2154$, found $[\mathrm{M}+\mathrm{H}]$ +486.2153.

Synthesis of compound 14

To a solution of compound 8 ($200 \mathrm{mg}, 0.6024 \mathrm{mmol}, 1$ eq) in 4 ml of DMF to this $\mathrm{CuSO}_{4}(75 \mathrm{mg}, 0.3012 \mathrm{mmol}$, 0.5 eq), sodium ascorbate ($120 \mathrm{mg}, 0.6024 \mathrm{mmol}, 1 \mathrm{eq}$) and NO_{2}-phenyl azide ($120 \mathrm{mg}, 0.9036 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and stirred at ambient condition till the consumption of starting material monitored by (TLC) for 30 min . To this saturated ammonium chloride (10 ml) was added and stirred for 10 min then the solution was extracted with EtOAc and concentrated under reduced pressure. Finally, the crude was subjected to column chromatography $(50 \% \mathrm{EtOAc} /$ Hexane $)$ afford compound $\mathbf{1 4}$ as a yellow solid ($133 \mathrm{mg}, 45 \%$), mp $93-95{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), $8.20(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.69(\mathrm{~m}, 2 \mathrm{H}), 5.34$ (s, 2H), $4.04-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.76-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.88-0.86(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CDCl} 3) ~ \delta ~ 211.23,149.65,147.35,146.30,145.85,141.19,135.10,125.64(2 \mathrm{C}), 121.04$, $120.61(2 \mathrm{C}), 120.29,114.61,112.38,67.78,63.25,55.97,49.47,45.21,36.59,31.81,29.21$, 25.22, 22.67, 14.11. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]+497.2395$, found $[\mathrm{M}+\mathrm{H}]+497.2391$.

Synthesis of compound 15

To a solution of compound $\mathbf{1 1}(100 \mathrm{mg}, 0.2217 \mathrm{mmol}, 1$ eq) in 5 ml of ethyl acetate were sequentially added DMP ($188 \mathrm{mg}, 0.4434 \mathrm{mmol}, 2 \mathrm{eq}$). The reaction mixture was stirred for $20-30 \mathrm{~min}$ at RT. The reaction mixture was filtered and concentrated under reduced vacuum. The concentrated reaction mixture was applied to silica gel column chromatography ($40 \% \mathrm{EtOAc} /$ Hexanes) afford compound $15(65 \mathrm{mg}, 65 \%$ as a pale white solid) after purification, mp $64-66^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.49$ ($\mathrm{s}, 1 \mathrm{H}$) enol, 8.10 $(\mathrm{s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 1 \mathrm{H}), 2.90$

- $2.84(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.30-$ $1.25(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.29, 193.65, 149.56, 145.98, 145.17, 137.01, 134.81, 129.91(2C), 129.09, 121.35, 120.72 (2C), 120.34, $114.51,112.24,99.53,63.28,55.97,40.44,38.30,31.48,31.31,25.52,22.50,14.03$. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]{ }^{+} 450.2387$, found $[\mathrm{M}+\mathrm{H}]+450.2387$.

Synthesis of compound 16

To a solution of compound $\mathbf{1 3}(100 \mathrm{mg}, 0.2057 \mathrm{mmol}, 1$ eq) in 5 ml of ethyl acetate were sequentially added DMP ($175 \mathrm{mg}, 0.4115 \mathrm{mmol}, 2 \mathrm{eq}$). The reaction mixture was stirred for $20-30 \mathrm{~min}$ at RT. The reaction mixture was filtered and concentrated under reduced vacuum. The concentrated reaction mixture was applied to silica gel column chromatography ($40 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 16 ($52 \mathrm{mg}, 52 \%$ as a yellow syrup) after purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 15.49(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.03$ $-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.84(\mathrm{~m}$, $2 \mathrm{H}), 2.64-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.91-0.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.26,193.67,149.59,146.01,145.60,135.59,134.85,134.73$, 130.06(2C), 121.83(2C), 121.09, 120.35, 114.48, 112.29, 99.51, 63.34, 55.98, 40.44, 38.29, 31.48, 31.30, 25.53, 22.49, 14.02. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]$ ${ }^{+} 484.1998$, found $[\mathrm{M}+\mathrm{H}]+484.1666$.

Synthesis of compound 17

To a solution of compound $14(100 \mathrm{mg}, 0.2016 \mathrm{mmol}, 1$ eq) in 5 ml of ethyl acetate were sequentially added DMP ($171 \mathrm{mg}, 0.4032 \mathrm{mmol}, 2 \mathrm{eq}$). The reaction mixture was stirred for $20-30 \mathrm{~min}$ at RT. The reaction mixture was filtered and concentrated under reduced vacuum. The concentrated reaction mixture was applied to silica gel column chromatography ($40 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 17 ($32 \mathrm{mg}, 32 \%$ as a yellow solid) after purification, $\mathrm{mp} 83-85{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathbf{1 5 . 5 7}$ (s, 1H)enol, 8.41 (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 8.20 (s, 1H), 7.97 (d, $J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}$, $3 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.33-1.25(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 194.20, 193.72, $149.60,147.40,146.38,145.86,141.22,135.08,125.70$ (2C), 121.01, 120.65 (2C), 120.37, $114.48,112.37,112.31,99.52,63.27,55.99,40.45,38.28,31.50,31.30,25.55,22.51,14.05$.

$\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 eq), Propargyl bromide (1.1 eq), DMF rt 5 h 84%,

Synthesis of compound 19

To a solution of compound $18(400 \mathrm{mg}, 1.2121 \mathrm{mmol}, 1$ eq) in 7 ml of DMF to this $\mathrm{CuSO}_{4}(151 \mathrm{mg}, 0.6060 \mathrm{mmol}$, 0.5 eq), sodium ascorbate ($240 \mathrm{mg}, 1.2121 \mathrm{mmol}, 1 \mathrm{eq}$) and phenyl azide ($217 \mathrm{mg}, 1.8181 \mathrm{mmol}, 1.5 \mathrm{eq}$) was added and stirred at ambient condition till the consumption of starting material monitored by (TLC) for 30 min . To this saturated ammonium chloride (10 ml) was added and stirred for 10 min then the solution was extracted with EtOAc and concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($40 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 19 as a white solid (247 $\mathrm{mg}, 45 \%$), mp108-110 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=16.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.33-$ $1.30(\mathrm{~m}, 3 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.06, 150.22, 149.87, 144.55, 143.55, 137.08, 129.95, 129.12, 128.17(2C), 124.99, 123.20, $121.42,120.78(2 \mathrm{C}), 113.78,110.51,68.14,56.13,46.80,36.72,31.96,29.85,25.38,22.78$, 14.19. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]+450.2387$, found $[\mathrm{M}+\mathrm{H}]$ +450.2387.

Synthesis of compound 20

To a solution of compound 18 ($200 \mathrm{mg}, 0.6060 \mathrm{mmol}, 1$ eq) in 4 ml of DMF to this $\mathrm{CuSO}_{4}(79 \mathrm{mg}, 0.3030 \mathrm{mmol}, 0.5$ eq), sodium ascorbate ($120 \mathrm{mg}, 0.6060 \mathrm{mmol}, 1 \mathrm{eq}$) and Cl-phenyl azide ($140 \mathrm{mg}, 0.9090$ mmol, 1.5 eq) was added and stirred at ambient condition till the consumption of starting material monitored by (TLC) for 30 min . To this saturated ammonium chloride (10 ml) was added and stirred for 10 min then the solution was extracted with EtOAc and concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($40 \% \mathrm{EtOAc} /$ Hexanes) afford compound 20 as a pale-yellow solid ($47 \mathrm{mg}, 16 \%$), mp 114$116{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=9.0$
$\mathrm{Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.62(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}$, $2 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 2.89-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 8 \mathrm{H})$, $0.90(\mathrm{t}, J=6.91 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.95,149.92$, 149.84, 147.48, $145.53,143.32,141.11,128.39(2 \mathrm{C}), 125.68,125.09,123.06,121.24,120.69(2 \mathrm{C}), 113.68$, $110.53,68.10,62.83,56.08,46.86,36.70,31.91,25.33,22.73,14.15$.

Synthesis of compound 21

To a solution of compound 19 ($150 \mathrm{mg}, 0.3325 \mathrm{mmol}, 1 \mathrm{eq}$) in 7 ml of ethyl acetate were sequentially added DMP (282 $\mathrm{mg}, 0.6651 \mathrm{mmol}, 2 \mathrm{eq})$. The reaction mixture was stirred for $20-30 \mathrm{~min}$ at RT. The reaction mixture was filtered and concentrated under reduced vacuum. The concentrated reaction mixture was applied to silica gel column chromatography ($40 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 21 ($107 \mathrm{mg}, 72 \%$ as a white solid) after purification, $\mathrm{mp} 88-90{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathbf{1 5 . 5 1}(\mathbf{s}, \mathbf{1 H})$ enol, $8.09(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.51$ (m, $3 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 2 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), \mathbf{5 . 6 3}(\mathrm{s}, \mathbf{1 H})$, $5.41(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), \mathbf{3 . 8 6}(\mathrm{s}, \mathbf{1 H}), 2.44-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.64,171.80,149.83,149.43,147.73,139.53$, 137.11, 129.94, 129.22, 129.08(2C), 122.10, 121.48, 121.38, 120.79(2C), 113.91, 110.53, $100.45,63.07,56.11,31.60,29.85,25.42,22.60,14.03$.

Synthesis of compound 22

To a solution of compound $9(150 \mathrm{mg}, 0.3926 \mathrm{mmol}, 1 \mathrm{eq})$ in 4 ml of ethanol to this phenyl hydrazine ($47 \mu \mathrm{l}, 0.4318 \mathrm{mmol}, 1.1$ eq) were added and the reaction mixture was stirred until complete consumption of the starting material was observed (TLC) for 12 h at $80^{\circ} \mathrm{C}$. Then the reaction mixture was concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($5 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 22 as a white solid ($60 \mathrm{mg}, \mathbf{3 4} \%$), mp 68-70 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ - 7.41 (m, 2H), $7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ 7.35 (m, 2H), $7.34-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.32$ (d, $J=1.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.95-2.87(\mathrm{~m}$, $2 \mathrm{H}), 2.81-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.61(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.91$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.95,149.64,146.72,143.45,140.04$, $137.43,134.15,129.11,128.65(2 \mathrm{C}), 127.91,127.63(2 \mathrm{C}), 127.35$ (2C), 125.55 (2C), 120.31,
$114.25,112.32,104.56,71.26,56.05,35.01,31.88,29.64,28.63,28.46,22.66,14.22$. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+455.2693$, found $[\mathrm{M}+\mathrm{H}]+455.2691$.

Synthesis of compound 23

To a solution of compound 9 ($150 \mathrm{mg}, 0.3926 \mathrm{mmol}, 1 \mathrm{eq}$) in 4 ml of ethanol to this Br-phenyl hydrazine hydrochloride (97 mg , $0.4318 \mathrm{mmol}, 1.1 \mathrm{eq})$ and to this triethyl amine ($60 \mu \mathrm{l}, 0.4318$ mmol, 1.1 eq$)$ was added and the reaction mixture was stirred until complete consumption of the starting material was observed (TLC) for 12 h at $80^{\circ} \mathrm{C}$. Then the reaction mixture was concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($5 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 23 as a brown liquid ($73 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58$ - 7.57 (m, 2H), 7.44 (dd, $J=1.35$, $0.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=2.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 4 \mathrm{H}), 2.62-2.54(\mathrm{~m}, 2 \mathrm{H}), 1.60-$ $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.32$, $149.63,146.54,144.71,139.19,137.58$, 135.36, 132.30 (2C), 128.63 (2C), 127.87, 127.40 (2C), 126.86, 121.25, 120.37 (2C), 114.32, 112.50, 105.01, 71.34, 56.06, 35.75, 31.57, 30.63, 28.59, 26.44, 22.45, 14.06. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{BrN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ ${ }^{+} 533.1793$, found $[\mathrm{M}+\mathrm{H}]+533.1778$

Synthesis of compound 24

To a solution of compound 9 ($300 \mathrm{mg}, 0.785 \mathrm{mmol}, 1 \mathrm{eq}$) in 4 ml of ethanol to this phenyl hydrazine ($138 \mathrm{mg}, 0.863 \mathrm{mmol}, 1.1$ eq) were added and the reaction mixture was stirred until complete consumption of the starting material was observed (TLC) for 12 h at $80^{\circ} \mathrm{C}$. Then the reaction mixture was concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($5 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 24 as a yellow solid ($80 \mathrm{mg}, 20 \%$), mp $92-94{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.07(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 4 \mathrm{H}), 1.78-1.72(\mathrm{~m}$, $2 \mathrm{H}), 1.43-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126
$\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.90,152.39,149.59,147.22,146.49,146.47,138.33,137.55,135.28$, 129.96, 128.67, 128.61, 127.84, 127.65 (2C), 127.38 (2C), 126.47, $125.95,120.38,115.58$, 114.26, 112.46, 107.56, 71.28, 56.03, 35.44, 31.88, 30.72, 28.85, 28.47, 22.64, 14.23. HRMS (ESI) Exact mass calcd. For $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+506.280$, found $[\mathrm{M}+\mathrm{H}]+506.279$.

Synthesis of compound 25

To a solution of compound $9(150 \mathrm{mg}, 0.3926 \mathrm{mmol}, 1 \mathrm{eq})$ in 4 ml of ethanol to this 1-hydrazino phthalazine $(85 \mathrm{mg}, 0.4319$ mmol, 1.1 eq) and triethylamine ($60 \mu \mathrm{l}, 0.4319 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added and the reaction mixture was stirred until complete consumption of the starting material was observed (TLC) for 12 h at $80^{\circ} \mathrm{C}$. Then the reaction mixture was concentrated under reduced pressure. Finally, the crude was subjected to column chromatography ($25 \% \mathrm{EtOAc} / \mathrm{Hexanes}$) afford compound 25 as a yellow solid ($48 \mathrm{mg}, 24 \%$), mp 144-146 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.32(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~s}$, $1 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.73$ (dd, $J=1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.97-$ $2.86(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.37,149.80,147.22,146.64,146.51,137.62,137.53$, 135.30, 131.73, 131.51, 128.62 (2C), 127.85, 127.45, 127.40, 127.31 (2C), 126.06, 124.60, $124.07,120.26,114.52,12.46,71.65,56.16,40.98,32.60,31.65,31.49,30.28,29.84,17.18$.

Fig.S1. ${ }^{1}$ H NMR of compound 2

Fig.S2. ${ }^{13} \mathrm{C}$ NMR of compound 2

Fig.S3. ${ }^{1} \mathrm{H}$ NMR of compound 4

Fig.S4. ${ }^{13} \mathrm{C}$ NMR of compound 4

Fig.S5. ${ }^{1} \mathrm{H}$ NMR of compound 5

Fig.S6. ${ }^{13} \mathrm{C}$ NMR of compound 5

Fig.S7. ${ }^{1} \mathrm{H}$ NMR of compound 6

Fig.S8. ${ }^{13} \mathrm{C}$ NMR of compound 6

Fig.S9. ${ }^{1} \mathrm{H}$ NMR of compound 7

Fig.S10. ${ }^{13} \mathrm{C}$ NMR of compound 7

Fig.S11. ${ }^{1} \mathrm{H}$ NMR of compound 11
-211.39

Fig.S12. ${ }^{13}$ C NMR of compound 11

Fig.S13. ${ }^{1} \mathrm{H}$ NMR of compound 12

Fig.S14. ${ }^{13} \mathrm{C}$ NMR of compound 12

Fig.S15. ${ }^{1} \mathrm{H}$ NMR of compound 13

Fig.S16. ${ }^{13} \mathrm{C}$ NMR of compound 13

Fig.S17. ${ }^{1} \mathrm{H}$ NMR of compound 14
M

Fig.S18. ${ }^{13}$ C NMR of compound 14

Fig.S19. ${ }^{1} \mathrm{H}$ NMR of compound 15

Fig.S20. ${ }^{13}$ C NMR of compound 15

Fig.S21. ${ }^{1} \mathrm{H}$ NMR of compound 16

Fig.S22. ${ }^{13} \mathrm{C}$ NMR of compound 16

Fig.S23. ${ }^{1} \mathrm{H}$ NMR of compound 17

Fig.S24. ${ }^{13}$ C NMR of compound 17

Fig.S25. ${ }^{1} \mathrm{H}$ NMR of compound 19

Fig.S26. ${ }^{13} \mathrm{C}$ NMR of compound 19

S27. ${ }^{1} \mathrm{H}$ NMR of compound 20

Fig.S28. ${ }^{13} \mathrm{C}$ NMR of compound 20

Fig.S29. ${ }^{1}$ HNMR of compound 21

Fig.S30. ${ }^{13} \mathrm{C}$ NMR of compound 21

Fig.S31. ${ }^{1} \mathrm{H}$ NMR of compound 22

Fig.S32. ${ }^{13}$ C NMR of compound 22

Fig．S33．${ }^{1} \mathrm{H}$ NMR of compound 23

	 	$\begin{aligned} & \text { जैल } \\ & \text { च̈न } \end{aligned}$	$\begin{aligned} & \text { लin } \\ & \text { すi } \end{aligned}$	$\begin{aligned} & \text { Ï } \\ & \text { 苐 } \end{aligned}$		$\stackrel{+}{\text { m }}$	\％	域	「気品年 	先
，\人	1115 岛！	\／	｜｜	I	W	1	｜	I	1／11	｜

Fig．S34．${ }^{13} \mathrm{C}$ NMR of compound 23

Fig.S35. ${ }^{1} \mathrm{H}$ NMR of compound 24

Fig.S36. ${ }^{13} \mathrm{C}$ NMR of compound 24

Fig.S37. ${ }^{1} \mathrm{H}$ NMR of compound 25

Fig.S38. ${ }^{13} \mathrm{C}$ NMR of compound 25

Fig.S39. ${ }^{1} \mathbf{H}$ NMR of intermediate Int-1

Fig.S40. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of intermediate Int-2

Crystallographic data

Bond precision:	$C-C=0.0059 \mathrm{~A}$	Wavelength=0.71073
Cell:	$a=5.650$ (3)	$\mathrm{b}=12.577(6) \quad \mathrm{c}=20.32$ (1)
	alpha=87.21(1)	bet $\mathrm{a}=83.78(1) \quad$ gamma $=89.06(1)$
Temperature:	300 K	
	Calculated	Reported
Volume	1433.7(12)	1434.20 (10)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C33 H35 N3 O2	C33 H35 N3 O2
Sum formula	C33 H35 N3 O2	C33 H35 N3 O2
Mr	505.64	505.64
Dx,g cm-3	1.171	1.171
Z	2	2
Mu (mm-1)	0.073	0.073
F000	540.0	540.0
F000'	540.21	
h, k, 1max	7,16,26	7,16,26
Nref	6709	6605
Tmin, Tmax	$0.981,0.984$	0.584,0.746
Tmin'	0.981	

Correction method= \# Reported T Limits: Tmin=0.584 Tmax=0.746
AbsCorr = MULTI-SCAN

Data completeness= $0.984 \quad$ Theta $(\max)=27.671$

$R($ reflections $)=0.0929(2562)$	wR2 (reflections) $=$	
$S=1.178$	Npar $=345$	$0.2753(6605)$

Fig.S41. Single crystal structure (ORTEP diagram) of 24.

Fig.S42. DPPH free radical scavenging activity of compounds (1, 4, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24 and 25) was compared with control Trolox. The single asterisk (*) denotes the significant difference between the control and treatment group $(25 \mu \mathrm{M}, 50 \mu \mathrm{M}$, and $100 \mu \mathrm{M})$ at $p<0.05$ level by one-way ANOVA followed by Duncan's multiple range test. The experiments were performed in triplicates and the values were provided in mean \pm SD.

Fig.S43. ABTS free radical scavenging activity of compounds (1, 4, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24 and 25), was compared with control Trolox. The single asterisk $\left(^{*}\right.$) denotes the significant difference between the control and treatment group $(25 \mu \mathrm{M}, 50 \mu \mathrm{M}$, and $100 \mu \mathrm{M})$ at $p<0.05$ level by one-way ANOVA followed by Duncan's multiple range test. The experiments were performed in triplicates and the values were provided in mean \pm SD.

Fig.S44. NO free radical scavenging activity of compounds (1, 4, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24 and 25) was compared with control Trolox. The single asterisk (*) denotes the significant difference between the control and treatment group $(25 \mu \mathrm{M}, 50 \mu \mathrm{M}$, and $100 \mu \mathrm{M})$ at $p<0.05$ level by one-way ANOVA followed by Duncan's multiple range test. The experiments were performed in triplicates and the values were provided in mean \pm SD.

