Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Boosting the broadband orange emission in organic-inorganic hybrid

metal halide of (DPG)₃InBr₆ via antimony doping

Shuya Jin^a, Qilin Wei^a, Hui Peng^{*b}, Bao Ke^a, Wenchao Lin^b, Bin He^b, Xianci Zhong^c, Bingsuo Zou^{*a, b}

^{a.} School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

^{b.} State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of

Resources, Environments and Materials, Guangxi University, Nanning 530004, China.

^{c.} Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China.

Corresponding Authors: penghuimaterial@163.com (H.P.); zoubs@gxu.edu.cn (B.Z.)

Empirical formula	(DPG)₃InBr ₆		
Chemical formula	C ₃₉ H ₄₂ Br ₆ InN ₉		
Formula weight	1231.05		
Temperature (K)	296.15		
Crystal system	Trigonal		
Space group	R-3		
a (Å)	<i>a</i> = 16.613(3)Å		
b (Å)	<i>b</i> = 16.613Å		
c (Å)	<i>c</i> = 14.280(3)Å		
α (deg)	$\alpha = 90^{\circ}$		
β (deg)	β = 90°		
γ (deg)	γ = 120°		
Volume (ų)	3413.1(13)		
Z	3		
Density (calculated) (g·cm ⁻³)	1.797		
Absorption coefficient (mm ⁻¹)	5.826		
F (000)	1794		
Index ranges	-21 ≤ h ≤ 15, -17 ≤ k ≤ 20, -18 ≤ l ≤ 14		
Reflections collected	88712		
Data completeness	99.9%		
Data/restraints/parameters Goodness-of-fit	1740/0/132		
Goodness of fit	1.013		
R (reflections)	0.0288		
wR2 (reflections)	0.0750		
Largest diff. peak and hole (eÅ ⁻³)	0.7 and -0.5		

 $\label{eq:constraint} \textbf{Table S1} \ Crystal \ data \ and \ structure \ refinement \ for \ (DPG)_3 In Br_6.$

 Table S2
 Bond angles of (DPG)₃InBr₆ and (DPG)₃InBr₆: Sb single crystal.

	Geometry	Br1-In1-Br2	Br1-In1-Br3	Br1-In1-Br4
	Bond angle	88.1365°	88.1412°	91.8683°
	Geometry	Br1-In1-Br5	Br2-In1-Br3	Br3-In1-Br4
	Bond angle	91.8633°	91.8623°	88.141°
(DPG)3INBr ₆	Geometry	Br4-In1-Br5	Br5-In1-Br2	Br2-In1-Br1
	Bond angle	91.8628°	88.1340°	91.8595°
	Geometry	Br3-In1-Br1	Br4-In1-Br1	Br5-In1-Br1
	Bond angle	91.8620°	88.1357°	88.1334°
	Geometry	Br1-In1-Br5	Br3-In1-Br5	Br1-In1-Br4
	Bond angle	83.6459°	91.3516°	91.8897°
(DPG)₃InBr ₆ : Sb	Geometry	Br3-In1-Br4	Br4-In1-Br5	Br2-In1-Br5
	Bond angle	88.6608°	87.0720°	91.0878°
	Geometry	Br3-In1-Br6	Br1-In1-Br6	Br2-In1-Br3
	Bond angle	91.7631°	93.2307°	93.1254°
	Geometry	Br2-In1-Br1	Br2-In1-Br6	Br4-In1-Br6
	Bond angle	86.1734°	88.1281°	93.6156°

Table S3 Bond lengths of $(DPG)_3InBr_6$ and $(DPG)_3InBr_6$: Sb single crystal.

(DPG)₃InBr ₆	Geometry	In1-Br1	In1-Br3	In1-Br5
	Bond length	2.67738 Å	2.67758 Å	2.67763 Å
	Geometry	In1-Br2	In1-Br4	In1-Br6
	Bond length	2.6774 Å	2.67747 Å	2.67759 Å
(DPG)₃InBr ₆ : Sb	Geometry	In1-Br1	In1-Br3	In1-Br5

	Bond length	2.70673 Å	2.70649 Å	2.71687Å
	Geometry	In1-Br2	In1-Br4	In1-Br6
	Bond length	2.74784 Å	2.716840 Å	2.73621 Å

Table S4 Time-resolved PL decay curve of $(DPG)_3InBr_6$ with different doping concentrations (EX: 405 nm laser, EM: 630 nm).

	(DPG)₃InBr ₆	(DPG)₃InBr₀: 1%Sb	(DPG)₃InBr₀: 5%Sb	(DPG)₃InBr₀: 10%Sb	(DPG)₃InBr₀: 30%Sb
τ1	4.3 ns (70.8%)	9.3 ns (65.3%)	11.1 ns (32.9%)	-	-
τ2	2.0 μs (29.2%)	1.9 μs (34.7%)	1.7 μs (67.1%)	1.6 µs	1.6 µs

Table S5 Time-resolved PL decay curve of $(DPG)_3InBr_6$ with different doping concentrations (EX: 405 nm laser, EM: 470 nm).

	(DPG)₃InBr ₆	(DPG)₃InBr ₆ : 1%Sb	(DPG)₃InBr ₆ : 5%Sb	(DPG)₃InBr ₆ : 10%Sb	(DPG)₃InBr ₆ : 30%Sb
τ1	1.9 ns	1.9 ns	2.6 ns	1.4 ns	1.6 ns

Fig. S1 Crystal structure of (DPG)₃InBr₆.

Fig. S2 Images of $(DPG)_3InBr_6$ (a) and $(DPG)_3InBr_6$: 10% Sb. (b) single crystals under daylight and UV-365 nm & 395 nm excitation.

Fig. S3 Formation energy for $(DPG)_3InBr_6$: Sb with five and six coordination numbers.

Fig. S4 High-resolution XPS spectra of O 1s and Sb $3d_{3/2}$ and $3d_{5/2}$ for (DPG)₃InBr₆: 10% Sb.

Fig. S5 High-resolution XPS image of $(DPG)_3InBr_6$ and $(DPG)_3InBr_6$: 10% Sb.

Fig. S6 (a) SEM image and the corresponding EDS mapping of elements. (b) EDS spectrum and (c) atomic percent of elements in the $(DPG)_3InBr_6$: 5% Sb. Scale bar: 5 μ m.

Fig. S7 The PLQY of (DPG)₃InBr₆: x%Sb (x=0, 1, 3, 5, 10, 30, 50, 100).

Fig. S8 PL intensity versus excitation power for (DPG) $_3$ InBr $_6$: 10%Sb.

Fig. S9 The Tauc plots of $(DPG)_3InBr_6$ with different Sb doping concentrations.

Fig. S10 PLQY measurement of (DPG)₃InBr₆: 10% Sb after 3 months.

Fig. S11 PXRD patterns of (DPG)₃InBr₆: 10% Sb before and after 3 months.

Fig. S12 Photostability of (DPG) $_3$ InBr $_6$: 10% Sb under continuous excitation (380 nm, 150mW cm⁻²).

Fig. S13 the DFT calculations of electronic band structure and DOS of (DPG)₃InBr₆: Sb with six coordination.

Fig. S14 (a) Emission spectrum of $(DPG)_3InBr_6$ at different temperatures excited at 322nm. (b) CIE coordinates of $(DPG)_3InBr_6$ at different temperatures.

Fig. S15 (a) The excitation-wavelength dependent PL spectra of $(DPG)_3InBr_6$ (b) and DPG·HBr. (c) PLE spectra of $(DPG)_3InBr_6$ and DPG·HBr monitored at 435 (d) and 470 nm.

Fig. S16 Absorption spectra of DPG·HBr, Insert: Tauc plot of DPG·HBr.

Fig. S17 Time-resolved PL decay curve of $(DPG)_3InBr_6$ and $DPG \cdot HBr$ monitored at 470 nm.

Fig. S18 PL of DPG·HBr monitored at 360 nm and PLE spectra of DPG·HBr monitored at 470 nm and $(DPG)_3InBr_6$ monitored at 630 nm.