Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Visible-light-promoted C(sp³)-H thiolation of aliphatic ethers with

thiosulfonates

Wen-Zhu Bi,^{*a,b} Qing-Pu Liu,^a Chen-Yu Li,^a Wen-Jie Zhang,^a Su-Xiang Feng,^{*b,c,d} Yang Geng,^{*e} Xiao-Lan Chen^f and Ling-Bo Qu^f

^a School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.

^b Henan Engineering Research Center of Modern Chinese Medicine Research, Development and Application, Zhengzhou, 450046, China.

^c Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. Email: fengsx221@163.com

^d Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, China

^e Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 450046, China. Email: gengyang0001@163.com

^f College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China.

Corresponding E-mail: biwenzhu2018@hactcm.edu.cn

Table of Contents

1. General information of reagents and instruments	S2
2. General synthetic procedure for thiosulfonates and selenosulfonates	
3. General synthetic procedure for products 3	S4
4. Investigations of photocatalyst, oxidant and base on the model reaction	
5. Mechanism Study	S6
6. Characterization data of compounds 3a-aa and 4a-c	S12
7. ¹ H NMR, ¹³ C NMR and HRMS/MS copies of compounds 3a-aa and 4a-c	S18

1. General information of reagents and instruments

All reagents and solvents were purchased from commercial suppliers without further purification. All reactions were carried out in borosilicate glass vessels in a photo reactor manufactured by Beijing Roger Technology Co., Ltd. And, all reactions were performed under the irradiation of 5 W blue LED light without using filters (Figure S1, left). The blue light's energy peak wavelength is 452.6 nm, peak width at half-height is 21.6 nm and the irradiance@5W is 146.2 mW/cm² (Figure S1, right). LED irradiate through a high-reflection channel (path length is 2 cm) to the test tube. The progress of the reactions were monitored by TLC (thin-layer chromatography) under 254 nm UV light. Products were purified by chromatography on 200-300 mesh silica gels. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ at room temperature (20 ± 2 °C) with Bruker Avance 400 MHz spectrometer operating at 400 MHz and 100 MHz, respectively. Chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, J, are reported in Hertz (Hz). High-resolution mass spectra (HRMS) were obtained on Agilent Technologies 6530 Accurate mass Q-TOF LC/MS with ESI as ion source and Agilent Technologies 7250 Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) GC/MS with EI as ion source. GC-MS analysis of the products were performed on Thermo Fisher DSQ II with EI ion source. Injection port was set at 220 °C, ion source temperature and AUX temperature zone were set at 250 °C, and injection volume was 1.0 µL. Fluorescence quenching experiments were performed by Hitachi F7000 fluorescence spectrometer.

Figure S1 The photo reactor (left) and the blue LED light source test report (right).

2. General synthetic procedure for thiosulfonates and selenosulfonates

2.1 Synthesis of thiosulfonates. Thiosulfonates were synthesized according to literature (*Org. Lett.*, 2020, **22**, 4908) with minor modifications using disulfides, sodium benzenesulfonates and iodine in CH_2Cl_2 . After completion of the reaction, sodium thiosulfate was added to remove the excess iodine. Then, the mixture was washed by brine; the organic phase were combined and dried over anhydrous Na_2SO_4 . After filtration and evaporation of the solvent, the crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) to give the corresponding desired products (Scheme S1).

Scheme S1 Structure of the synthesized thiosulfonates 1a-o

2.2 Synthesis of selenosulfonates. *Se*-phenyl benzenesulfonoselenoate and *Se*-benzyl benzenesulfonoselenoate were synthesized according to literature (*J. Org. Chem.*, 2019, **84**, 8100.) by the use of 1,2-diphenyldiselane or 1,2-dibenzyldiselane and sodium benzenesulfonate with [bis(trifluoroacetoxy)iodo]benzene (PIFA) in dichloromethane at 0 °C to room temperature for 3 h. The desired product was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 10 : 1, v/v).

$$R^{-Se}Se^{-R} + O^{Na} \xrightarrow{CH_2Cl_2, PIFA} O^{S-Se}Se^{-R}$$

$$R = Phenyl, Benzyl$$

Scheme S2 Synthesis of selenosulfonates

3. General synthetic procedure for products 3

Thiosulfonates (1, 0.4 mmol), TBHP (0.4 mmol, 70% aqueous solution), Na₂-eosin Y (2.5 mol%) and K₂CO₃ (1.0 equiv.) were dissolved in corresponding ethers (2, 2.0 mL) in a 25 mL reaction tube, and then the mixture was stirred with the irradiation of 5 W blue LED light under N₂ at room temperature for 12 h. After reaction, the mixture was diluted with brine and extracted with CH₂Cl₂ (15 mL × 3). The organic layers were combined and dried over anhydrous Na₂SO₄. The residue was

purified by silica gel column chromatography (petroleum ether/ethyl acetate = $10\sim 20/1$, v/v) to afford the desired products **3**.

Scheme S3 Synthesis of products 3

4. Investigations of photocatalyst, oxidant and base on the model reaction

Table S1 Optimization of reaction conditions.^a

	$ \begin{array}{c} & \bigcirc \\ & & \bigcirc \\ & & \\ & $				
	1a		2a	3a	
Entry	1	Ox.	PC.	Base	Yield $(\%)^b$
1	1a	TBHP	RhB	K ₂ CO ₃	63
2	1a	TBHP	EB	K_2CO_3	77
3	1a	TBHP	MB	K_2CO_3	73
4	1a	TBHP	RB	K_2CO_3	62
5	1a	TBHP	FL	K_2CO_3	61
6	1a	TBHP	EYH_2	K_2CO_3	67
7	1a	TBHP	Na ₂ -EY	K_2CO_3	83
8	1a	TBHP	Ru(bpy) ₃ Cl ₂	K_2CO_3	43
9	1a	DTBP	Na ₂ -EY	K_2CO_3	25
10	1a	$K_2S_2O_8$	Na ₂ -EY	K_2CO_3	17
11	1a	TBPB	Na ₂ -EY	K_2CO_3	trace
12	1a	BPO	Na ₂ -EY	K ₂ CO ₃	trace
13	1a	H_2O_2	Na ₂ -EY	K_2CO_3	33
14	1a	<i>m</i> -CPBA	Na ₂ -EY	K_2CO_3	trace
15	1a	TBHP	Na ₂ -EY	KOH	44
16	1a	TBHP	Na ₂ -EY	NEt ₃	38
17	1a	TBHP	Na ₂ -EY	NaHCO ₃	21
18	1a	-	Na ₂ -EY	K_2CO_3	n.r.
19	1a	TBHP	Na ₂ -EY-	-	n.r.

^{*a*} Reaction conditions: **1a** (0.4 mmol), oxidant (1.0 equiv.), photocatalyst (2.5 mol%) and base (1.0 equiv.) were mixed in THF (**2a**, 2.0 mL) with the irradiation of 5 W blue LED light under N₂ atmosphere at room temperature for 12 h. ^{*b*} Isolated yield based on **1** were provided. RhB = rhodamine B, EB = eosin B, MB = methylene blue, RB = rose bengal, FL = fluorescein, EYH₂ = eosin Y, Na₂-EY = Na₂-eosin Y, TBHP = *tert*-butyl hydroperoxide (70% aqueous solution), DTBP = di-*tert*-butyl peroxide, TBPB = *tert*-butyl peroxybenzoate, BPO = benzoyl peroxide, H₂O₂ was 30% aqueous solution, *m*-CPBA = *m*-chloroperoxybenzoic acid. n.r. = no reaction.

5. Mechanism Study

5.1 Experiment interfered with radical scavenger

In a 25 mL reaction tube, *S*-phenyl benzenethiosulfonate (**1a**, 0.4 mmol), TBHP (0.4 mmol, 70% aqueous solution), Na₂-eosin Y (2.5 mol%), K₂CO₃ (1.0 equiv.) and 2.0 equiv. of (2,2,6,6-tetramethylpiperidin-1-yl)oxidanyl (TEMPO) or 1,1-diphenylethylene (ASYM) were dissolved in THF (2.0 mL), respectively. The mixtures were stirred under standard reaction conditions for 12 h and then detected by HRMS.

Figure S2 HRMS spectrum of the benzenesulfenyl radical/TEMPO adduct 5

Figure S3 HRMS spectrum of the benzenesulfonyl radical/TEMPO adduct 6

Figure S4 HRMS spectrum of the α -alkoxyalkyl radical /TEMPO adduct 7

Figure S5 HRMS Spectrum of the benzenesulfenyl radical /ASYM adduct 8

Figure S6 HRMS spectrum of the benzenesulfonyl radical / ASYM adduct 9

Figure S7 HRMS spectrum of the α -alkoxyalkyl radical / ASYM adduct 10

5.2 Fluorescence quenching experiments

A stock solution of Na₂-eosin Y (5 mM in THF) was prepared for the quenching experiment. 200 μ L Na₂-eosin Y stock solution was diluted to 2.0 mL with THF in a quartz cuvette (1 cm × 1 cm). The fluorescence excitation and emission spectra were firstly recorded as shown below. The maximum excitation/emission wavelength were detected as 461/559 nm. Then, quenching experiments were performed with addition of TBHP (70% aqueous solution) or **1a**, respectively.

Figure S8 Fluorescence excitation (left) and emission (right) spectra of Na₂-eosin Y (5×10^{-4} M) in

Figure S9 Fluorescence emission spectra of Na₂-eosin Y (5×10^{-4} M) in THF with TBHP (1.0 - 5.0 mM)

Figure S10 The linear relationship between I_0/I (I_0 and I are the fluorescence intensities before and after the addition of TBHP) and the concentration of TBHP

Figure S11 Fluorescence emission spectra of Na₂-eosin Y (5×10^{-4} M) in THF with 1a (1.0 - 5.0 mM)

Figure S12 The linear relationship between I_0/I (I_0 and I are the fluorescence intensities before and after the addition of 1a) and the concentration of 1a

6. Characterization data of compounds 3a-aa and 4a-c

2-(phenylthio)tetrahydrofuran (3a)

Pale oil, yield: 83%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.51 (m, 2H), 7.29 (m, 2H), 7.22 (m, 1H), 5.65 (m, 1H), 4.06-3.94 (m, 2H), 2.39-2.34 (m, 1H), 2.04-1.90 (m, 2H), 1.90-1.87 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 135.7, 131.1, 128.8, 126.8, 87.2, 67.3, 32.7, 24.8. GC-HRMS (EI) for C₁₀H₁₂OS (m/z): calcd. 180.0609, found 180.0583.

2-(p-tolylthio)tetrahydrofuran (3b)

Pale oil, yield: 69%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.40 (m, 2H), 7.11 (m, 2H), 5.57 (m, 1H), 4.03-3.93 (m, 2H), 2.36-2.30 (m, 4H), 2.03-1.84 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 137.0, 131.9, 131.7, 129.6, 87.6, 67.2, 32.6, 24.8, 21.1. GC-MS (EI) for C₁₁H₁₄OS (m/z): calcd. 194.08, found 194.10.

2-((4-methoxyphenyl)thio)tetrahydrofuran (3c)

Pale oil, yield: 73%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.46 (m, 2H), 6.85 (m, 2H), 5.47 (m, 1H), 4.02-3.90 (m, 2H), 3.79 (s, 3H), 2.34-2.27 (m, 1H), 2.00-1.83 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 159.4, 134.6, 125.6, 114.4, 88.2, 67.2, 55.3, 32.5, 24.8. GC-MS (EI) for C₁₁H₁₄O₂S (m/z): calcd. 210.07, found 210.08.

2-((2-fluorophenyl)thio)tetrahydrofuran (3d)

Pale oil, yield: 81%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.60 (m, 1H), 7.25 (m, 1H), 7.12-7.04 (m, 2H), 5.70 (m, 1H), 4.07-3.93 (m, 2H), 2.40-2.33 (m, 1H), 2.08-2.00 (m, 2H), 1.92-1.87 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 162.7 and 160.3, 133.9, 129.0 and 128.9, 124.52 and 124.48, 122.4 and 122.2, 115.7 and 115.4, 86.44 and 86.43, 67.4, 32.7, 24.6. GC-MS (EI) for C₁₀H₁₁FOS (m/z): calcd. 198.05, found 198.04.

2-((4-chlorophenyl)thio)tetrahydrofuran (3e)

Pale oil, yield: 85%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.43 (m, 2H), 7.26 (m, 2H), 5.60 (m, 1H), 4.04-3.93 (m, 2H), 2.39-2.34 (m, 1H), 2.04-1.86 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 134.2, 133.0, 132.4, 128.9, 87.3, 67.3, 32.6, 24.8. GC-MS (EI) for C₁₀H₁₁ClOS (m/z): calcd. 214.02, found 214.03.

2-((tetrahydrofuran-2-yl)thio)phenyl acetate (3f)

Pale oil, yield: 77%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.52 (m, 2H), 7.02 (m, 2H), 5.60 (m, 1H), 4.03-3.93 (m, 2H), 2.38-2.33 (m, 1H), 2.28 (s, 3H), 2.03-1.87 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 169.3, 149.8, 132.5, 122.0, 87.5, 67.2, 32.6, 24.8, 21.1. GC-MS (EI) for C₁₂H₁₄O₃S (m/z): calcd. 238.07, found 238.08.

2-(thiophen-2-ylthio)tetrahydrofuran (3g)

Pale oil, yield: 75%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.36 (m, 1H), 7.17 (m, 1H), 7.00 (m, 1H), 5.43 (m, 1H), 4.06-4.00 (m, 1H), 3.98-3.93 (m, 1H), 2.32-2.26 (m, 1H), 2.01-1.97 (m, 2H), 1.95-1.84 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ : 134.3, 132.4, 129.9, 127.5, 89.5, 67.5, 32.1, 24.6. GC-MS (EI) for C₈H₁₀OS₂ (m/z): calcd. 186.02, found 186.10.

2-methyl-3-((tetrahydrofuran-2-yl)thio)furan (3h)

Pale oil, yield: 69%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.27 (m, 1H), 6.41 (m, 1H), 5.32 (m, 1H), 4.02-3.93 (m, 1H), 3.92-3.88 (m, 1H), 2.35 (s, 3H), 2.28-2.22 (m, 1H), 2.01-1.84 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 155.4, 140.4, 115.5, 109.3, 87.7, 67.2, 32.3, 24.8, 11.9. GC-MS (EI) for C₉H₁₂O₂S (m/z): calcd. 184.06, found 184.05.

2-(benzylthio)tetrahydrofuran (3i)

Pale oil, yield: 78%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.36-7.29 (m, 4H), 7.23 (m, 1H), 5.23 (m, 1H), 3.98-3.88 (m, 2H), 3.77-3.73 (m, 2H), 2.22-2.18 (m, 1H), 2.02-1.97 (m, 1H), 1.97-1.77 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ : 138.6, 129.0, 128.4, 126.8, 83.0, 66.8, 32.0, 32.1, 24.8. GC-MS (EI) for C₁₁H₁₄OS (m/z): calcd. 194.08, found 194.10.

2-(phenylthio)-1,4-dioxane (3l)

Pale oil, yield: 80%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.50 (m, 2H), 7.32-7.26 (m, 3H), 5.12 (m, 1H), 4.25-4.20 (m, 1H), 4.00-3.96 (m, 1H), 3.74-3.65 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ : 134.0, 131.6, 129.0, 127.4, 83.3, 70.0, 66.5, 63.8. GC-MS (EI) for C₁₀H₁₂O₂S (m/z): calcd. 196.06, found 196.07.

2-(p-tolylthio)-1,4-dioxane (3m)

Pale oil, yield: 76%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.41 (m, 2H), 7.11 (m, 2H), 5.02 (m, 1H), 4.22-4.18 (m, 1H), 3.98-3.94 (m, 1H), 3.72-3.65 (m, 4H), 2.33 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 137.7, 136.5, 132.4, 129.7, 83.5, 69.9, 66.4, 64.0, 21.1. GC-MS (EI) for C₁₁H₁₄O₂S (m/z): calcd. 210.07, found 210.07.

2-((4-chlorophenyl)thio)-1,4-dioxane (3n)

Pale oil, yield: 83%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.43 (m, 2H), 7.27 (m, 2H), 5.08 (m, 1H), 4.26-4.21 (m, 1H), 3.99-3.95 (m, 1H), 3.74-3.64 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ : 133.6, 132.9, 132.5, 129.1, 83.3, 69.8, 66.5, 63.6. GC-MS (EI) for C₁₀H₁₁ClO₂S (m/z): calcd. 230.02, found 230.02.

2-(thiophen-2-ylthio)-1,4-dioxane (30)

Pale oil, yield: 67%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.39 (m, 1H), 7.19 (m, 1H), 7.00 (m, 1H), 4.91 (m, 1H), 4.28-4.23 (m, 1H), 3.96-3.93 (m, 1H), 3.72-3.66 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ : 135.0, 130.4, 130.3, 127.5, 84.5, 69.4, 66.5, 63.7. GC-MS (EI) for C₈H₁₀O₂S₂ (m/z): calcd. 202.01, found 202.01.

2-(phenylthio)tetrahydro-2H-pyran (3p)

Pale oil, yield: 71%. ¹H NMR (CDCl₃, 400 MHz): δ: 7.48 (m, 2H), 7.29 (m, 2H), 7.26-7.19 (m, 1H), 5.21 (m, 1H), 4.20-4.15 (m, 1H), 3.61-3.56 (m, 1H), 2.04-1.99 (m, 1H), 1.86-1.81 (m, 2H), 1.67-1.61 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 135.4, 130.9, 128.8, 126.7, 85.3, 64.5, 31.6, 25.5,

21.7. GC-MS (EI) for C₁₁H₁₄OS (m/z): calcd. 194.08, found 194.08.

2-(p-tolylthio)tetrahydro-2H-pyran (3q)

Pale oil, yield: 67%. ¹H NMR (CDCl₃, 400 MHz): δ: 7.38 (m, 2H), 7.10 (m, 2H), 5.12 (m, 1H), 4.20-4.14 (m, 1H), 3.59-3.53 (m, 1H), 2.32 (s, 3H), 2.04-1.98 (m, 1H), 187-1.78 (m, 2H), 1.78-1.60 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 136.9, 131.7, 131.4, 129.6, 85.7, 64.6, 31.6, 25.5, 21.7, 21.1.

2-((4-chlorophenyl)thio)tetrahydro-2H-pyran (3r)

Pale oil, yield: 75%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.40 (m, 2H), 7.25 (m, 2H), 5.17 (m, 1H), 4.18-4.12 (m, 1H), 3.61-3.55 (m, 1H), 2.03-2.00 (m, 1H), 1.85-1.81 (m, 2H), 1.66-1.61 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 133.9, 132.8, 132.2, 128.9, 85.4, 64.4, 31.5, 25.5, 21.5. GC-MS (EI) for C₁₁H₁₃ClOS (m/z): calcd. 228.04, found 228.04.

2-(thiophen-2-ylthio)tetrahydro-2H-pyran (3s)

Pale oil, yield: 63%. ¹H NMR (CDCl₃, 400 MHz): δ: 7.36 (m, 1H), 7.15 (m, 1H), 6.99 (m, 1H), 5.00 (m, 1H), 4.22-4.16 (m, 1H), 3.61-3.56 (m, 1H), 2.02-1.95 (m, 1H), 1.86-1.77 (m, 2H), 1.64-1.60 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ: 134.1, 132.0, 129.6, 127.4, 87.3, 64.4, 30.9, 25.5, 21.3. GC-MS (EI) for C₉H₁₂OS₂ (m/z): calcd. 200.03, found 200.04.

(tert-butoxymethyl)(phenyl)sulfane (3t)

Pale oil, yield: 57%. ¹H NMR (CDCl₃, 400 MHz): δ: 7.49 (m, 2H), 7.29-7.26 (m, 2H), 7.20 (m, 1H), 4.90 (s, 2H), 1.26 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 136.6, 130.0, 128.8, 126.4, 75.3, 68.2, 27.8. GC-MS (EI) for C₁₁H₁₆OS (m/z): calcd. 196.09, found 196.09.

(tert-butoxymethyl)(4-chlorophenyl)sulfane (3u)

n C

Pale oil, yield: 62%. ¹H NMR (CDCl₃, 400 MHz): δ: 7.42 (m, 2H), 7.25 (m, 2H), 4.87 (s, 2H), 1.55 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 135.1, 132.6, 131.4, 128.9, 75.5, 68.3, 27.8. GC-MS (EI)

for $C_{10}H_{13}ClO_2S$ (m/z): calcd. 230.05, found 230.05.

(4-chlorophenyl)(1-methoxycyclopentyl)sulfane (3x-i) and (4-chlorophenyl)((cyclopentyloxy)methyl)sulfane (3x-ii) (3x)

Pale oil, yield: 75% (**3x-i** : **3x-ii** = 2.5 : 1.0). ¹H NMR (CDCl₃, 400 MHz): δ : 7.40 (m, 3H), 7.25 (m, 3H), 4.93-4.33 (m, 1H), 3.46 (s, 3H), 1.87-1.68 (m, 11H); ¹³C NMR (CDCl₃, 100 MHz) δ : 134.8 and 134.7, 133.6 and 132.9, 132.6 and 131.4, 129.0 and 128.7, 100.4, 79.1 and 73.9, 51.4, 38.0, 32.0, 23.5 and 23.2. GC-MS (EI) for C₁₂H₁₅ClOS (m/z): calcd. 242.05, found 242.04.

2-((4-chlorophenyl)thio)-2-methyltetrahydrofuran (3y-i) and 2-((4-chlorophenyl)thio)-5methyltetrahydrofuran (3y-ii) (3y)

Pale oil, yield: 81% (**3y-i** : **3y-ii** = 3.0 : 1.0). ¹H NMR (CDCl₃, 400 MHz): δ : 8.36 (m, 2H), 7.86 (m, 2H), 1.58 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ : 152.9, 149.8, 126.3, 124.2, 84.3, 29.9. GC-MS (EI) for C₁₁H₁₃ClOS (m/z): calcd. 228.04, found 228.02.

(4-chlorophenyl)(1,2-dimethoxyethyl)sulfane (3z-i)

Pale oil, yield: 46%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.42 (m, 2H), 7.27 (m, 2H), 4.72 (m, 1H), 3.56-3.49 (m, 5H), 3.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 135.2, 134.2, 130.6, 129.0, 88.8, 74.5, 59.1, 56.3. GC-MS (EI) for C₁₀H₁₃ClO₂S (m/z): calcd. 232.03, found 232.06.

(4-chlorophenyl)((2-methoxyethoxy)methyl)sulfane (3z-ii)

Pale oil, yield: 31%. ¹H NMR (CDCl₃, 400 MHz): δ : 7.41 (m, 2H), 7.25 (m, 2H), 5.03 (s, 2H), 3.79-3.76 (m, 2H), 3.59-3.55 (m, 2H), 3.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : 134.4, 132.8, 131.5, 129.0, 76.5, 71.5, 67.5, 59.0. GC-MS (EI) for C₁₀H₁₃ClO₂S (m/z): calcd. 232.03, found 232.06.

2-((4-chlorophenyl)thio)-1,3-dioxolane (3aa-i) and 4-((4-chlorophenyl)thio)-1,3-dioxolane (3aa-ii) (3aa)

Pale oil, yield: 68% (**3aa-i** : **3aa-ii** = 2.7 : 1.0). ¹H NMR (CDCl₃, 400 MHz): δ : 7.69-7.67 (m, 2H), 7.52-7.50 (m, 3H), 1.56 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ : 146.6, 131.5, 128.9, 124.9, 82.8, 29.9. GC-MS (EI) for C₉H₉ClO₂S (m/z): calcd. 216.00, found 216.00.

tert-butyl 4-nitrobenzenesulfinate (4a)

O₂N

Yellow solid, yield: 75%. ¹H NMR (CDCl₃, 400 MHz): δ: 8.36 (m, 2H), 7.86 (m, 2H), 1.58 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 152.9, 149.8, 126.3, 124.2, 84.3, 29.9.

tert-butyl benzenesulfinate (4b)

White oil, yield: 78%. ¹H NMR (CDCl₃, 400 MHz): δ: 7.69-7.67 (m, 2H), 7.52-7.50 (m, 3H), 1.56 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 146.6, 131.5, 128.9, 124.9, 82.8, 29.9.

tert-butyl 4-chlorobenzenesulfinate (4c)

CI

White oil, yield: 81%. ¹H NMR (CDCl₃, 400 MHz): δ: 7.62-7.60 (m, 2H), 7.50-7.48 (m, 2H), 1.55 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ: 145.2, 137.9, 129.2, 126.4, 83.3, 29.9.

7. ¹H NMR, ¹³C NMR and HRMS/MS copies of compounds 3a-aa and 4a-c

¹³C NMR spectrum of compound **3a**

HRMS spectrum of compound 3a

¹H NMR spectrum of compound **3b**

 $^{13}\mathrm{C}$ NMR spectrum of compound $\mathbf{3b}$

MS spectrum of compound 3b

¹³C NMR spectrum of compound **3**c

¹³C NMR spectrum of compound **3d**

MS spectrum of compound 3d

H NMR spectrum of compound 3e

¹³C NMR spectrum of compound **3e**

 $^{13}\mathrm{C}$ NMR spectrum of compound 3f

MS spectrum of compound $\mathbf{3f}$

¹³C NMR spectrum of compound **3g**

¹H NMR spectrum of compound **3h**

¹³C NMR spectrum of compound **3h**

MS spectrum of compound 3h

¹³C NMR spectrum of compound **3i**

¹³C NMR spectrum of compound **3**l

MS spectrum of compound 31

¹³C NMR spectrum of compound **3m**

¹H NMR spectrum of compound **3n**

¹³C NMR spectrum of compound **3n**

MS spectrum of compound **3n**

¹³C NMR spectrum of compound **30**

¹³C NMR spectrum of compound **3p**

MS spectrum of compound **3p**

¹³C NMR spectrum of compound **3**q

¹³C NMR spectrum of compound **3r**

¹H NMR spectrum of compound **3s**

¹³C NMR spectrum of compound **3s**

MS spectrum of compound 3s

¹³C NMR spectrum of compound **3**t

¹H NMR spectrum of compound **3u**

¹³C NMR spectrum of compound **3u**

MS spectrum of compound $\mathbf{3u}$

¹³C NMR spectrum of compound 3x

MS spectrum of compound 3x

¹H NMR spectrum of compound 3y

 ^{13}C NMR spectrum of compound 3y

¹³C NMR spectrum of compound **3z-i**

¹H NMR spectrum of compound **3z-ii**

¹³C NMR spectrum of compound **3z-ii**

MS spectrum of compound 3z-ii

¹³C NMR spectrum of compound **3aa**

¹H NMR spectrum of compound 4a

¹³C NMR spectrum of compound **4a**

¹H NMR spectrum of compound **4b**

¹³C NMR spectrum of compound **4b**

¹H NMR spectrum of compound 4c

¹³C NMR spectrum of compound **4c**