Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Development of BODIPY based Ratiometric Fluorescence Off-On Dosimeter for Gamma Radiation

Manoj K. Choudhary^a and Soumyaditya Mula*^{a,b}

^aBio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India.

^bHomi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.

Email: smula@barc.gov.in

Content

s.no	Title	Page no.
1	Synthesis and characterization.	S2-S3
2	Photophysical properties.	S3
3	Details of γ -dosimetry studies.	S3-S13
6	¹ H NMR and ¹³ C NMR spectra.	S14-S17
7	References.	S17

Synthesis and characterization.

All the chemical reactions were carried under argon atmosphere using anhydrous solvents in screw-cap schlenk tube. All the chemical reagents and solvents were purchased from local supplier and were used without any further purification. Thin-layer chromatography was used to monitor the progress of the reactions using commercially available 0.25 mm fluorescent silica plate (F-254) and visualized using a UV-lamp (254 nm and 354 nm wavelength). Compounds were purified by flash chromatography using silica gel (40-63 µm). NMR spectra were recorded in 300 MHz Bruker FT-NMR & 500 MHz Varian FT-NMR instruments. High Resolution Mass Spectrometric (HRMS) analysis was done using 6540 UHD Accurate-Mass Agilent Q-TOF LC/MS instrument.

2,6-Diethyl-4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-*s***-indecene** (1).¹ ¹H NMR: δ 1.03 (t, *J* = 7.6 Hz, 6H), 2.32 (s, 6H), 2.67 (s, 3H), 2.37 (q, *J* = 7.6 Hz, 4H), 2.48 (s, 6H), 2.59 (s, 3H); ¹³C NMR: δ 12.2, 14.2, 14.8, 16.7, 17.0, 131.5, 132.2, 136.3, 139.8, 151.6; HRMS (ESI-TOF) m/z [M + H⁺] Calcd. for C₁₈H₂₅BF₂N₂: 319.2157. Found: 319.2123.

4,4-Difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indecene (2).¹ ¹H NMR: δ 2.40 (s, 6H), 2.52 (s, 6H), 2.56 (s, 3H), 6.05 (s, 2H); ¹³C NMR: δ 14.4, 16.3, 17.3, 121.2, 132.0, 141.0, 141.4, 153.6; EI-MS m/z (%): 262.0 (100) [M]⁺.

2,6-Diethyl-4,4-difluoro-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-s-indecene (3).¹ ¹H NMR: δ 1.09 (t, *J* = 7.6 Hz, 6H), 1.48 (s, 6H), 2.31 (q, *J* = 7.6 Hz, 4H), 2.87 (s, 6H), 7.01–7.06 (m, 2H), 7.29–7.37 (m, 3H); ¹³C NMR: δ 11.6, 12.5, 14.6, 17.1, 128.3, 128.7, 129.0, 130.8, 132.7, 135.8,138.4, 140.2, 153.7; EI-MS m/z (%): 380.0 (100) [M]⁺.

4,4-Difluoro-1,3,5,7-tetramethyl-8-phenyl-4-bora-3a,4a-diaza-s-indecene (4).¹ ¹H NMR: δ 1.36 (s, 6H), 2.54 (s, 6H), 5.97 (s, 2H), 7.25–7.28 (m, 2H), 7.44–7.48 (m, 3H); ¹³C NMR: δ 14.2, 14.5, 121.2, 127.9, 128.5, 128.9, 129.1, 131.4, 134.9, 141.7, 143.1, 155.4; HRMS (ESI-TOF) m/z [M + H⁺] Calcd. for C₁₉H₁₉BF₂N₂: 325.1687. Found: 325.1660.

4,4-Difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indecene (5).² ¹H NMR: δ 6.55 (d, J = 7.0 Hz, 2H, 6.95 (d, J = 7.0 Hz, 2H), 7.50-7.60 (m, 5H), 7.95 (s, 2H); ¹³C NMR: δ 118.5, 128.4, 130.5, 130.7, 131.6, 133.8, 134.9, 144.1, 147.4; EI-MS m/z (%): 268.1 (100) [M]⁺.

BODIPY dye 6. A mixture of pyrrole (**8**) (18.5 mL, 268.1 mmol), 4-(dimethylamino)benzaldehyde (1.0 g, 6.7 mmol) and TFA (4 drops) in CH₂Cl₂ (30 mL) was stirred at 25 °C for 12 h. DDQ (1.67 g, 7.37 mmol) was added to the resulting deep colour solution and stirring continued for 4 h. Then, the mixture was treated with Et₃N (5.6 mL, 40.2 mmol) and stirred for another 10 min. Finally, BF₃.Et₂O (4.96 mL, 40.2 mmol) was added into the mixture and the solution stirred at room temperature for 12 h. The resulting dark mixture was washed with aqueous saturated NaHCO₃ (50 mL), H₂O (80 mL) and brine (80 mL) and dried. Removal of solvent in vacuum followed by column chromatography of the residue (silica gel, hexane-EtOAc) furnished BODIPY dye **6** (0.61 g, 29%), which was recrystallized from CH₂Cl₂/cyclohexane to afford red crystals. ¹H NMR: δ 3.11 (s, 6H), 6.54 (d, *J* = 2.0 Hz, 2H), 6.83 (d, *J* = 8.5 Hz, 2H), 7.04 (d, *J* = 4.0 Hz, 2H), 7.57 (d, *J* = 8.5 Hz, 2H), 7.87 (s, 2H); ¹³C NMR: δ 40.1, 111.4, 117.6, 121.7, 130.7, 133.1, 134.4, 141.6, 148.4, 152.5; HRMS (ESI-TOF) m/z [M + H]⁺ Calcd. for C₁₇H₁₆BF₂N₃: 312.1484; Found: 312.1493.

BODIPY dye 7. A mixture of BODIPY dye **6** (50 mg, 0.16 mmol) and MeI (5 mL) in a sealed tube was heated at 40 °C for 3 d. The excess amount of MeI was removed under vacuum and the residue was purified by column chromatography (C-18 silica gel, MeOH) to obtain BODIPY dye 7 (30 mg, 57%) as red powder. ¹H NMR: δ 4.07 (s, 9H), 6.71 (s, 2H), 6.99 (s, 2H), 8.03 (d, *J* = 8.5 Hz, 2H), 8.08 (s, 2H), 8.43 (d, *J* = 8.5 Hz, 2H); ¹³C NMR: δ 58.0, 120.2, 122.0, 132.3, 133.1, 135.5, 136.3, 145.5, 146.2, 149.9; HRMS (ESI-TOF) m/z [M]⁺ Calcd. for C₁₈H₁₉BF₂IN₃: 453.0685; Found: 453.0632.

Photophysical Properties.

Dye	λ_{abs} [nm]	$\lambda_{\rm em}$ [nm]	\mathcal{E}_{max} [M ⁻¹ cm ⁻¹]	$arPhi_{ m fl}[\%]^{[m a]}$
6	496.0, 540.0	609.0	55700	<1

Table S1. Photophysical properties of the dyes 6 in chloroform at room temperature.

^[a]Determined using $\Phi_{\rm fl} = 0.88$ for Rhodamine 6G in ethanol as the reference.³

Experimental details for γ **-dosimetry.** 2 mL solutions of the dyes 1-7 in organic solvents (~10⁻⁶ M) were irradiated with specified γ -doses using the Gamma Chamber 5000 (Make: Board of Radiation and Isotope Technology (BRIT), DAE, Mumbai, India; Dose rate: 81.80 Gy/min; Source: ⁶⁰Co). Then the absorbance and fluorescence were recorded after 5 min of the end of the irradiation of γ -rays.

Figure S1. Absorption spectra of dye 1 in chloroform after γ -irradiation with different doses.

Figure S2. Fluorescence spectra of dye 1 in chloroform after γ -irradiation with different doses.

Figure S3. Absorption spectra of dye 2 in chloroform after γ -irradiation with different doses.

Figure S4. Fluorescence spectra of dye 2 in chloroform after γ -irradiation with different doses.

Figure S5. Absorption spectra of dye 3 in chloroform after γ -irradiation with different doses.

Figure S6. Fluorescence spectra of dye 3 in chloroform after γ -irradiation with different doses.

Figure S7. Absorption spectra of dye 4 in chloroform after γ -irradiation with different doses.

Figure 8. Fluorescence spectra of dye 4 in chloroform after γ -irradiation with different doses.

Figure S9. Absorption spectra of dye 5 in chloroform after γ -irradiation with different doses.

Figure 10. Fluorescence spectra of dye 5 in chloroform after γ -irradiation with different doses.

Figure S11. Absorption spectra of dye 3 in tetrahydrofuran after γ -irradiation with different doses.

Figure S12. Absorption spectra of dye 3 in ethyl acetate after γ -irradiation with different doses.

Figure S13. Absorption spectra of dye **3** in ethyl acetate/chloroform (3:1) after γ -irradiation with different doses.

Figure S14. Absorption spectra of dye **3** in ethyl acetate/chloroform (1:1) after γ -irradiation with different doses.

Figure S15. Absorption spectra of dye **3** in ethyl acetate/chloroform (1:3) after γ -irradiation with different doses.

Figure S16. Absorption spectra of dye 7 in chloroform before and after γ -irradiation (100 Gy).

Figure S17. Fluorescence spectra of dye 7 in chloroform before and after γ -irradiation (100 Gy).

Figure S18. (a) Absorption and (b) fluorescence spectra of BODIPY dye 6 in chloroform, and after exposure with HCl fume and 200 Gy of γ -radiation.

Figure S19. Fluorescence intensity ratio ($I_{530 nm}/I_{609 nm}$) changes of dye 6 with γ -irradiation doses.

Calculation of LOD: LOD was calculated as per the IUPAC protocol using the formula $3\sigma/S$ where S is the slope of the calibration curve and σ is the standard deviation of the fluorescence response of the blank, determined by recording 10 consecutive fluorescence measurements of the dye at identical condition.

 $LOD = (3 \times 0.025165) / 0.13707$ = 0.55 Gy

Table S2. Measurement	of unknown	v-dose using	dve 6	in chloroform.
		10)	

Dose measured by	Dose measured by fluorescence dosimetry
Fricke dosimetry (Gy)	-Our method (Gy)
84.92	84.55

Figure S20. ¹³C NMR spectrum of BODIPY dye 6.

Figure S21. ¹H NMR spectrum of BODIPY dye 7.

Figure S22. ¹³C NMR spectrum of BODIPY dye 7.

References.

(a) S. Mula, A. K. Ray, M. Banerjee, T. Chaudhuri, K. Dasgupta and S. Chattopadhyay, J. Org. Chem. 2008, 73, 2146-2154; (b) A. B. More, S. Mula, S. Thakare, S. Chakraborty, A. K. Ray, N. Sekar and S. Chattopadhyay, J. Lumin., 2017, 190, 476-484; (c) A. B. More, S. Mula, S. Thakare, N. Sekar, A. K. Ray and S. Chattopadhyay, J. Org. Chem., 2014, 79, 10981-10987.

- 2. R. W. Wagner and J. S. Lindsey, Pure Appl. Chem., 1996, 68, 1373-1380.
- 3. J. Olmsted, J. Phys. Chem., 1979, 83, 2581-2584.