Preparation of highly dispersed metallic Pt nanoparticle catalysts for low-temperature propene combustion

Bei Huang,^a Ke Wang,^a Fanxing Zhang,^a Xianfeng Shen,^a Kewu Yang,^a Yi He,^{*a}

Keping Yan,^{a,b} Yao Shi,^a and Pengfei Xie^{*a,b}

^a College of Chemical and Biological Engineering, Zhejiang University, Hangzhou

310027, China

^b Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan,

030032, China

Catalyst characterization. The dispersion of platinum in the catalysts was determined by H_2 -O₂ titration on VDsorb-91i apparatus equipped with a thermal conductivity detector (TCD). In a typical test, 50 mg of catalyst was placed in a quartz tube reactor and activated in 10% H_2 /Ar (30 ml min⁻¹) at 200°C for 1 h; the catalyst was then purged with helium (30 ml min⁻¹) at the same temperature for another 0.5 h, after which it was cooled down to 50°C. Subsequently, the O₂ titration of the catalyst was performed by pulsing 5% O₂/He into the reactor several times at 50°C until the consumption of O₂ became negligible. Then, H_2 titration was carried out in the same way, 10% H_2 /Ar was pulsed into the reactor several times to reach equilibrium adsorption. The platinum dispersion (D%) was calculated by the following equation:

Dispersion (%) = 100 ×
$$V_{H2}$$
 × 2/3 × $MW_{Pt}/(W_{Pt}$ × 22414)

Where V_{H2} is the volume of adsorbed H_2 (mL), MW_{Pt} is the atomic weight of Pt (g·mol-1), and W_{Pt} is the weight of Pt supported on the sample (g).

DRIFTS was performed upon CO adsorption using a Nicolet 6700 (Thermo Scientific) equipped with a mercury-cadmium-telluride (MCT) detector. The catalyst powders were placed in an in-situ cell. The cell was purged with a stream of N_2 at 200°C for 1 h to remove water and impurities and cooled to room temperature under a stream of N_2 flow. After background collection under N_2 at 20°C, the catalysts were saturated with 5% CO/N₂ gas for 30 min, and DRIFT spectra were collected under vacuum subsequently.

Catalyst Oxidation Tests of C₃H₈, CO, NO. The same pretreatment and gas hourly space velocity conditions for light-off tests of C₃H₆ were applied in oxidation experiments of C₃H₈, CO, NO. 140 mg of samples (40–60 mesh) was used and the total gas velocity is 350 mL min⁻¹ for oxidation experiments of C₃H₈, CO, NO. For C₃H₈ oxidation test, the reactant gas is made up of 1000 ppm C₃H₈, 12 vol% O₂, and Ar as balance gas. For CO oxidation test, the reactant gas is made up of 2000 ppm CO, 12 vol% O₂, and Ar as balance gas. For NO oxidation test, the reactant gas is made up of 2000 ppm CO, 12 vol% O₂, and Ar as balance gas. For NO oxidation test, the reactant gas is made up of 2000 ppm CO, 12 vol% O₂, and Ar as balance gas. A Shimadzu GC-2014 instrument was utilized to determine the concentration of C₃H₈ and CO in the inlet and outlet of reactor. The online NO–NO₂–NO_x analyzer (Thermo Scientific 42i-HL) was used to determine the concentration of NO in the inlet and outlet of reactor.

Catalysts	T ₅₀ (°C)	T ₉₀ (°C)
1% Pt-RD ₁	104.5	120.0
1% Pt-RD ₂	96.0	108.0
1% Pt-RD ₃	95.0	101.0
1% Pt-RD ₃ -H	104.0	109.0
1.5% Pt-RD ₃	95.5	104.0

Table S1 Comparison of T₅₀ and T₉₀ of Pt-RD catalysts

Catalyst	Reactant composition	Space velocity/flow rate	T ₉₀ (°C)	Ref.
1% Pt/Al ₂ O ₃	1000 ppm C ₃ H ₆ , 12%	$150000 \text{ mL } \text{h}^{-1}$	100	
(This work)	O ₂ , Ar balance	gcat ⁻¹		
1% Pt/Al ₂ O ₃ ^a	600 ppm C ₃ H ₆ , 1% O ₂ , He balance	50000 h ⁻¹	<180	1
0.8% Pd/TiO ₂	1000 ppm $C_{3}H_{6}$, 9% O_{2} , air balance	35000 h ⁻¹	162	2
1% Au/TiO ₂	1000 ppm C_3H_6 , 9% O_2 , He balance	35000 h ⁻¹	<275	3
2% Pt/BaO/Al ₂ O ₃	800 ppm $C_{3}H_{6}$, 2% O_{2} , N ₂ balance	1000 mL min ⁻¹	225	4
1% Au/CeO ₂ ^b	1200 ppm C_3H_6 , 9% O_2 , He balance	150 mL min ⁻¹	190	5

 Table S2 Comparison of some representative catalysts for propene combustion

0.5% Pd-1%	1000 ppm C ₃ H ₆ , air	100 mL min ⁻¹	<225	6
Au/TiO ₂	balance			
3% Au–3% Ir/TiO ₂	1200 ppm C_3H_6 , 9% O_2 , He balance	7800 h ⁻¹	<200	7
1% Pt/Al-PILC ^c	0.5% C ₃ H ₆ , 10% O ₂ , He balance	$2000 \ h^{-1}$	250	8

^aCatalyst with Pt dispersion of 0.81. ^bCatalyst was first activated in a H₂ stream. ^cAl-

PILC: Al-pillared montmorillonite.

Fig. S1 Light-off curves of the 1% Pt-IW sample in dry conditions and with 10% steam.

Fig. S2 (a–e) The HR-TEM and HAADF-STEM images of 1% Pt-IW, 1% Pt-RD₁, 1% Pt-RD₂, 1% Pt-RD₃-H, 1.5% Pt-RD₃ catalysts (with the images of Pt particles size distribution inserted).

Fig. S3 The HRTEM image of 1% Pt-RD₃ catalyst.

References

- M. Haneda, T. Watanabe, N. Kamiuchi and M. Ozawa, *Appl. Catal., B*, 2013, 142–143, 8–14.
- 2 S. Gil, J. Garcia-Vargas, L. Liotta, G. Pantaleo, M. Ousmane, L. Retailleau and
 A. Giroir-Fendler, *Catalysts*, 2015, 5, 671–689.
- 3 M. Ousmane, L. F. Liotta, G. Pantaleo, A. M. Venezia, G. Di Carlo, M. Aouine,
 L. Retailleau and A. Giroir-Fendler, *Catal. Today*, 2011, 176, 7–13.
- 4 J. Wan, R. Ran, M. Li, X. Wu and D. Weng, J. Mol. Catal. A: Chem., 2014,
 383–384, 194–202.
- 5 P. Lakshmanan, L. Delannoy, V. Richard, C. Méthivier, C. Potvin and C. Louis, *Appl. Catal.*, *B*, 2010, **96**, 117–125.
- 6 M. Hosseini, S. Siffert, H. L. Tidahy, R. Cousin, J. F. Lamonier, A. Aboukais,
 A. Vantomme, M. Roussel and B. L. Su, *Catal.Today*, 2007, 122, 391–396.

- 7 A. Aguilar-Tapia, R. Zanella, C. Calers, C. Louis and L. Delannoy, *Phys. Chem. Chem. Phys.*, 2015, **17**, 28022–28032.
- 8 A. Aznárez, A. Gil and S. A. Korili, RSC Adv., 2015, 5, 82296–82309.