Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

CoFe layered double hydroxides with adjustable composition and structure for

enhanced oxygen evolution reaction

Wan Rong,^{ab} Rui Dang,^b Yunfei Chen,^b Kang Huang,^a Jiuyang Xia,^a Bowei Zhang,^{*a} Jianfei Liu,^b Meixin Li,^c Qigao Cao ^{*b} and Junsheng Wu ^{*a}

¹Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P.R. China.

²Northwest Institute For Nonferrous Metal Research, 96 Weiyang Road, Xi'an, Weiyang district, 710016, P.R. China.

³The Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710054, P.R. China.

Corresponding Author

¹Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P.R.China.

*Email: bwzhang@ustb.edu.cn (Bowei Zhang)

*Email: wujs76@163.com (Junsheng Wu)

²Northwest Institute For Nonferrous Metal Research, 96 Weiyang Road, Weiyang district, 710016, P.R. China.

*Email: caoqigao@c-nin.com (Qigao Cao)

Fig. S1 SEM images of different samples: (a) Co₂Fe₁ LDH and (b) Co₁Fe₂ LDH

Fig. S2 XRD patterns of the Co₂Fe₁ LDH and Co₁Fe₂ LDH

Table 31. Mass fraction of co and re in different Loris defined by ICF-OLS.					
Sample	Co (wt. %)	Fe (wt. %)	Other elements (wt. %)		
Co ₂ Fe ₁ LDH	25.3	11.9	62.8		
Co ₁ Fe ₁ LDH	19.2	18.5	62.3		
Co ₁ Fe ₂ LDH	13.5	25.7	60.8		
Co LDH	35.3	/	64.7		
Fe LDH	/	41.2	58.8		

Table S1. Mass fraction of Co and Fe in different LDHs defined by ICP-OES.

Fig. S3 (a) TEM and (b) HRTEM images of Co₂Fe₁ LDH, Inset to (b): Corresponding SAED pattern

Fig. S4 (a) TEM and (b) HR-TEM images of Co₁Fe₂ LDH, Inset to (b): Corresponding SAED pattern

Fig. S5 Electronic structure analysis of the Co₂Fe₁ LDH: (a) XPS survey spectra, (b) Co 2p XPS spectra, (c) Fe 2p XPS spectra and (d) O1 s XPS spectra

Fig. S6 Electronic structure analysis of the Co₁Fe₂ LDH: (a) XPS survey spectra, (b) Co 2p XPS spectra, (c) Fe 2p XPS spectra and (d) O1 s XPS spectra

Fig. S7 Equivalent electrical circuit of electrochemical impedance spectroscopy. An equivalent electrical circuit used to model the OER process.

Table S2. The values of R _c	of the Co ₂ Fe ₁ LDH	, Co ₁ Fe ₁ LDH, Co ₁ Fe ₂ LDH	, Co LDH and Fe LDH from EIS	spectra.
--	--	--	------------------------------	----------

Samples	$Co_2Fe_1 LDH$	$Co_1Fe_1 LDH$	Co_1Fe_2 LDH	Co LDH	Fe LDH	IrO ₂
R _{ct} (Ω)	1.53	1.14	1.46	3.25	2.68	3.9

Fig. S8 The scan rate-dependent CV curves of (a) Co LDH, (b) Fe LDH and (c) Co₁Fe₁ LDH

Fig. S9 (a) ECSA and (b) ECSA-normalized OER activity of the Co₁Fe₁ LDH, Co LDH and Fe LDH

Fig. S10 TOF curves of the Co₂Fe₁ LDH, Co₁Fe₁ LDH, Co₁Fe₂ LDH, Co LDH and Fe LDH

Table S3. The values of TOFs of the Co₂Fe₁ LDH, Co₁Fe₁ LDH, Co₁Fe₂ LDH, Co LDH and Fe LDH for OER.

Samples	Co_2Fe_1 LDH	Co_1Fe_1 LDH	Co ₁ Fe ₂ LDH	Co LDH	Fe LDH
TOFs for OER					
@1.53 V vs. RHE	0.03295	0.03839	0.02246	0.00253	0.000096
(S ⁻¹)					

Fig. S11 XRD patterns of Co₁Fe₁ LDH before and after OER stability test

Fig. S12 SEM images of different samples: (a) Co₁Cr₁ LDH, (c) Co₁Mn₁ LDH, (e) Co₁Ni₁ LDH and (g) Co₁Cu₁ LDH; (b,d,f,h) the corresponding PXRD patterns of them

Fig. S13 The LSV and EIS curves of different Co_1M_1 LDHs

Catalysts	Catalyst loading	η_{10}	Tafel slope	Poforonco
Catalysts	(mg cm ⁻²)	(mV)	(mV dec ⁻¹)	Reference
Co ₁ Fe ₁ LDH	1.00	270	42.7	This Work
Co-LDH FNSAs	0.18	300	110	Co-precipitation [S1]
CoFe LDH	0.71	310	72.7	Hydrothermal [52]
Co ₁ Fe _{0.2} NPs	0.28	246	37.0	Co-precipitation [S3]
Co _{0.55} Fe _{0.45} BPO-OER	0.70	270	26.0	Hydrothermal [54]
CoFe-LDHs	1.00	310	59.0	Co-precipitation [SS]
Co ₂ FeO ₄	0.20	293	67.0	Hydrothermal [S6]
CoFe-MOF-OH	0.21	351	48.0	Hydrothermal [57]
Co ₄ Fe ₆ -MOF	1.00	241	30.1	Co-precipitation [S8]
CoFe LDH	0.10	404	-	Solvothermal [S9]
Co₅Fe₅O(OH)	0.20	276	52.0	Hydrothermal [S10]
Fe-Co3O4@C/FTO	1.10	396	68.6	MOF-derived pyrolysis [S11]
FeSe ₂	0.01	330	48.1	Solvothermal [S12]
NF-PVP/CoFe _{1.3}	2.00	234	46.4	electro-spinning [S13]
CoFe LDH		280	58.2	Co-precipitation [S14]

Table S4. Comparison of the OER activity between Co₁Fe₁ LDH with other electrocatalysts in 1.0 M KOH

References

[S1] T Wang, X Liu, Y Li, F Li, Z Deng and Y Chen, *Nano Res*, 2020, **13**, 79-80.

[S2] M Li, Y Gu, Y Chang, X Gu, J Tian, X Wu and L Feng, *Chem. Eng. J.*, 2021, 130686.

[S3] X Bai, Z Duan, B Nan, L Wang, T Tang and J Guan, *Chin. J. Catal.*, 2022, 43, 2240–2248.

[S4] L Reith, J Hausmann, S Mebs, I Mondal, H Dau, M Driess and P Menezes, *Adv. Energy Mater.*, 2023, 2203886-2203896.

[S5] P Li, M Wang, X Duan1, L Zheng, X Cheng, Y Zhang, Y Kuang, Y Li, Q Ma, Z Feng, W Liu and X Sun, *Nat. Commun.*, 2019, **10**, 1711-1721.

[S6] A Hanan, M Lakhan, D Shu, A Hussain, M Ahmed, I Soomro, V Kumar and D Cao, Int. J. Hydrogen Energy., 2023, 2, 49-63.

[S7] Z Zou, T Wang, X Zhao, W Jiang, H Pan, D Gao and Cailing Xu, ACS Catal., 2019, 9, 7356–7364.

[S8] X Hou, Z Han, X Xu, D Sarker, J Zhou, M Wu, Z Liu, M Huang and H Jiang, *Chem. Eng. J.*, 2021, 418, 129330-129339.
[S9] F Dionigi, Z Zeng, I Sinev, T Merzdorf, S Deshpande, M Lopez, S Kunze, I Zegkinoglou, H Sarodnik, Di Fan, A Bergmann, J, Drnec, J Araujo, M Gliech, D Teschner, J Zhu, We Li, J Greeley, B Cuenya and P Strasser, *Nat. Commun.*, 2020, 11, 2522.

[S10] J Chen, H Li, S Chen, J Fei, C Liu, Z Yu, K Shin, Z Liu, L Song, G Henkelman, L Wei and Y Chen, Adv. Energy Mater., 2021, 11, 2003412.

[S11] D Raja, P Cheng, C Cheng, S Chang, C Huang and S Lu, Appl. Catal. B-environ., 2022, 303, 120899.

[S12] R Gao, H Zhang and D Yan, *Nano Energy*, 2017, **31**, 90.

[S13] Z Guo, W Ye, X Fang, J Wan, Y Ye, Y Dong, D Cao and D Yan, Inorg. Chem. Front., 2019, 6, 687.

[S14] R Gao and D Yan, Nano Res, 2018, 11, 1883.