Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supporting Information

Turn-on type afterglow probe for Hg²⁺ sensing by a PVA-mediated triplet sensitizer

Satoshi Takegawa, Masato Ito and Yuji Kubo*

Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397

Table of contents

General	S-2
Materials	S-2
Synthesis	S-2 ~ S-3
Fabrication of films	S-3
References	S-3
DFT/TD-DFT calculation	S-4 \sim S-7
Table S1. Energy levels and electronic transition characters of BPBA	S-4 ~ S-5
Figure S1. Molecular orbitals of BPBA calculated at ωB97X-D3/def2-TZVP level	S-5
Table S2. Energy levels and electronic transition characters of 1	S-5 ~ S-6
Figure S2. Molecular orbitals of 1 calculated at @B97X-D3/def2-TZVP level	S-6
Table S3. Energy levels and electronic transition characters of 2	$S-6 \sim S-7$
Figure S3. Molecular orbitals of 2 calculated at ωB97X-D3/def2-TZVP level	S-7
Figure S4. Energy diagrams of 1 and 2	S-8
Figure S5. FT IR spectra of PVA film and BPB@PVA	S-8
Figure S6. Change in the delayed emission intensity ratios ($I_{530 \text{ nm}}/I_{460 \text{ nm}}$) by varying concentre	rations of 2 doped into
BPB@PVA	S-8
Characterization	S-9 ~ S-14
Figure S7. ¹ H NMR spectrum (400 MHz) of BPBA in DMSO- d_6 .	
Figure S8. ¹³ C NMR spectrum (101 MHz) of BPBA in DMSO- d_6 .	
Figure S9. HR FAB-MS spectra of BPBA.	
Figure S10. ¹ H NMR spectrum (500 MHz) of 1 in CDCl ₃ .	
Figure S11. ¹³ C NMR spectrum (126 MHz) of 1 in DMSO- d_6 .	
Figure S12. FAB-MS spectra of 1.	

Experimental Section

General

NMR spectra were measured on a Bruker Advance 500 spectrometer (¹H: 500 MHz, ¹³C: 126 MHz) or JEOL JNM-ESC400 (¹H: 400 MHz, ¹³C; 101 MHz). In ¹H and ¹³C NMR measurements, chemical shifts (δ) are reported downfield from the internal standard Me₄Si and BF₃·OEt₂, respectively. The absorption and emission were measured using Shimadzu UV-3600 UV/vis spectroscopy and a JASCO FP-8500 spectrofluorometer, respectively. FT-IR spectra were recorded on a JASCO FT/IR-4100 spectrometer with NaCl salt plate. The absolute photoluminescence quantum yields (Φ) for emission up to 650 nm were determined by JASCO FP-8500 spectrofluorometer equipped integral sphere (ϕ = 60 mm). Photographic images were taken with digital camera (Canon, EOS Kiss X8i).

Materials

Unless otherwise indicated, reagents used for the synthesis were commercially available and were used as supplied. Bis[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanone¹ and 2-methoxy-9*H*-thioxanthen-9-one 2^2 were prepared according to method previously reported.

Bis[4-dihydroxyborylphenyl]methanone BPBA

Scheme 1. Synthesis route of BPBA.

To a solution of bis[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanone (0.262 g, 0.60 mmol) in THF (10 mL) was added 3.0 M KHF₂ aqueous solution (1.0 mL). The resultant solution was stirred for 3 h at room temperature. After adding CH₃OH and H₂O, the solution was evaporated to remove pinacol as side product. The solid was extracted with CH₃CN to obtain the intermediate, being dissolved in CH₃CN (8 mL) and H₂O (9 mL). To the solution was added an aqueous solution of 1.0 M LiOH (6.0 mL) for 22 h. After neutralization with 1M HCl, the solution was extracted with CH₃CN for three times. The organic layer was evaporated to obtain white solid in 85% yield. ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm), 8.32 (s, 4H), 7.94 (d, *J* = 8.0 Hz, 4H), 7.68 (d, J = 8.0 Hz). ¹³C NMR (101 MHz, DMSO-*d*₆): δ (ppm), 196.4, 138.2, 134.1, 128.5. The signals arising from the carbon atoms bound to the boron one were undetectable due to the quadrupolar relaxation. HRMS (FAB): calcd for C₁₉H₂₁B₂O₇ [M(Glycerol)₂+H]⁺: 383.1468, found 383.1469. Glycerol was used as a matrix.

2-Methoxy-9H- thioxanthene-9-thione 1

Scheme 2. Synthesis route of 1.

2-Methoxy-thioxanthen-9-one **2** (0.314 g, 1.3 mmol) and Lawesson's reagent (1.13 g, 2.8 mmol) were dissolved in toluene (10 mL) under N₂ atmosphere. The resultant solution was refluxed at 80 °C for 3 h. After quenching the reaction by water, the solution was extracted with AcOEt for three times. And the organic phase was then dried with Na₂SO₄, evaporated in vacuo and chromatographed on silica gel (Wacogel C-300) using CH₂Cl₂/hexane (1:1 v/v). In this way, 0.339 g of **1** was obtained quantitatively. ¹H NMR (500 MHz, CDCl₃): δ (ppm), 9.08 (d, *J* = 8.5 Hz, 1H), 8.59 (d, *J* = 2.8 Hz 1H), 7.61 (d, *J* = 3.7 Hz, 2H), 7.53 (d, *J* = 8.8, 1H), 7.46 (dt, *J* = 8.4, 4.2 Hz, 1H), 7.30 (dd, *J* = 8.8, 2.8 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d*₆): δ (ppm), 207.7, 158.9, 137.4, 135.8, 133.1, 132.3, 131.9, 128.3, 127.5, 126.7, 124.0, 122.5, 114.0, 55.5. FAB-MS: m/z = 259 [M+H]⁺. Elemental analysis for C₁₄H₁₀OS₂: C 65.09, H 3.90, N 0, Found: C 65.05, H 3.92.

Fabrication of benzoylphenyl boronate-crosslinked PVA film (BPB@PVA)

The film was fabricated by drop-casting DMSO solution (500 μ L) of commercial PVA (number average molecular weight (M_n) of 89000 – 98000; saponification number = 99%, 0.40 unit M³) and **BPBA** (8.0 mM), followed by solvent exchange with water and dried in vacuo. The resultant films were characterized by FT-IR cm⁻¹); 3336, 2942, 1652, 1418, 1306, 1094, 931, 853, 699, 672, 642.

Fabrication of 2-doped BPB@PVA (2/BPB@PVA)

The film was fabricated by drop-casting DMSO solution (500 μ L) of commercial PVA (number average molecular weight (M_n) of 89000 – 98000; saponification number = 99%, 0.40 unit M³), **BPBA** (8.0 mM) and **2** (0.40 mM), followed by solvent exchange with water and dried in vacuo.

Fabrication of 1-doped BPB@PVA (1/BPB@PVA)

The film was fabricated by drop-casting DMSO solution (500 μ L) of commercial PVA (number average molecular weight (M_n) of 89000 – 98000; saponification number = 99%, 0.40 unit M³), **BPBA** (8.0 mM) and **1** (0.40 mM), followed by solvent exchange with water and dried in vacuo.

References

- X. Miao, Z. Cai, J. Li, L. Liu, J. Wu, B. Li, L. Ying, F. Silly, W. Deng and Y. Cao, *ChemPhotoChem*, 2021, 5, 626-631.
- 2. M. Bhanuchandra, H. Yorimitsu and A. Osuka, Org. Lett., 2016, 18, 384-387.
- 3. The concentration was based on monomer unit.

DFT/TD-DFT calculation

Density functional theory (DFT) calculations at the ω B97X-D3/def2-TZVP level were performed in the Orca 4.2.1 software. These molecular orbitals were visualized using Gauss view 6.0.16 program. The molecular structures of **BPBA**, **1** and **2** optimized in the lowest singlet excited state are displayed below.

Table S1. Energy levels and electronic transition characters of **BPBA** optimized in the lowest singlet excited state.The frontier molecular orbitals of the dye are shown in Figure S1.

State	Energy	Oscillator strength	Transition
\mathbf{S}_1	3.261 eV	0.0011	HOMO-4→LUMO (43.8%)
	(380 nm)		HOMO→LUMO (42.8%)
S_2	4.700 eV	0.0259	HOMO-2→LUMO (55.9%)
	(264 nm)		HOMO-4→LUMO (12.8%)
			HOMO-3→LUMO+1 (10.6%)
S_3	4.737 eV	0.1751	HOMO-3→LUMO (41.4%)
	(262 nm)		HOMO-1→LUMO (31.5%)
			HOMO-2→LUMO+1 (7.6%)
S_4	4.824 eV	0.5519	HOMO-1→LUMO (54.2%)
	(257 nm)		HOMO-3→LUMO (30.0%)
S_5	5.009 eV	0.1151	HOMO→LUMO (40.9%)
	(248 nm)		HOMO-4→LUMO (30.3%)
T_1	2.536 eV	0	HOMO→LUMO (76.4%)
	(489 nm)		HOMO-1→LUMO+1 (5.3%)
T ₂	2.977 eV	0	HOMO-4→LUMO (65.3%)
	(417 nm)		HOMO-2→LUMO (10.6%)
			HOMO-1→LUMO+1 (5.7%)
			HOMO-4→LUMO+6 (5.2%)

T ₃	3.242 eV	0	HOMO-1→LUMO (54.9%)
	(382 nm)		HOMO→LUMO+1 (16.3%)
			HOMO-3→LUMO+3 (5.4%)
T ₄	3.909 eV	0	HOMO-2→LUMO (60.4%)
	(317 nm)		HOMO-3→LUMO+1 (22.2%)
T ₅	3.949 eV	0	HOMO-3→LUMO (64.7%)
	(314 nm)		HOMO-2→LUMO+1 (25.9%)

Figure S1. Molecular orbitals of BPBA calculated at @B97X-D3/def2-TZVP level.

State	Energy	Oscillator strength	Transition
S_1	2.001 eV	0.0004	HOMO-1→LUMO (94.8%)
	(620 nm)		
S_2	3.151 eV	0.1907	HOMO→LUMO (96.0%)
	(393 nm)		
S ₃	3.779 eV	0.0331	HOMO-2→LUMO (94.5%)
	(328 nm)		
S_4	4.312 eV	0.0095	HOMO-3→LUMO (51.6%)
	(288 nm)		HOMO→LUMO+1 (33.9%)
S_5	4.535 eV	0.0729	HOMO-4→LUMO (74.4%)
	(273 nm)		HOMO-2→LUMO+1 (4.6%)
			HOMO-3→LUMO (4.6%)
S_6	4.920 eV	0.4982	HOMO→LUMO+1 (54.5%)
	(252 nm)		HOMO-3→LUMO (20.9%)
			HOMO-4→LUMO (13.2%)
T_1	1.453 eV	0	HOMO→LUMO (60.7%)
	(854 nm)		HOMO-2→LUMO (29.0%)
T ₂	1.644 eV	0	HOMO-1→LUMO (92.3%)
	(754 nm)		

Table S2. Energy levels and electronic transition characters of 1 optimized in the lowest singlet excited state.

T3	2.777 eV	0	HOMO-2→LUMO (55.1%)
	(447 nm)		HOMO→LUMO (32.0%)
Τ4	3.180 eV	0	HOMO-4→LUMO (32.2%)
	(390 nm)		HOMO→LUMO+1 (22.4%)
			HOMO-3→LUMO (13.4%)
			HOMO-2→LUMO+3 (6.6%)
T ₅	3.656 eV	0	HOMO-3→LUMO (35.2%)
	(339 nm)		HOMO-4→LUMO (22.9%)
			HOMO→LUMO+1 (15.7)

Figure S2. Molecular orbitals of 1 calculated at ω B97X-D3/def2-TZVP level.

Table S3. Energy levels and electronic transition characters of 2 optimized in the lowest singlet excited state. The	;
frontier molecular orbitals of the dye are shown in Figure S3.	

State	Energy	Oscillator strength	Transition
S ₁	3.339 eV	0.0002	HOMO-2→LUMO (88.0%)
	(371 nm)		HOMO-2→LUMO+7 (5.6%)
S ₂	3.640 eV	0.0957	HOMO→LUMO (93.7%)
	(341 nm)		
S ₃	4.523 eV	0.0075	HOMO→LUMO+1 (40.6%)
	(274 nm)		HOMO-1→LUMO (34.3%)
S4	4.885 eV	0.0044	HOMO-4→LUMO (43.2%)
	(254 nm)		HOMO→LUMO+1 (13.3%)
			HOMO→LUMO+2 (12.3%)
			HOMO-1→LUMO (11.3%)
S 5	4.999 eV	0.0504	HOMO-3→LUMO (50.8%)
	(248 nm)		HOMO-1→LUMO (25.0%)
S ₆	5.304 eV	0.8045	HOMO-4→LUMO (27.8%)
	(234 nm)		HOMO→LUMO+1 (25.5%)
			HOMO→LUMO+4 (16.1%)
			HOMO-3→LUMO (10.6%)

T1	2.486 eV	0	HOMO→LUMO (55.0%)
·	(499 nm)		HOMO-1→LUMO (15.5%)
	(199 mm)		
			HOMO-3→LUMO (13.8%)
T ₂	2.873 eV	0	HOMO-2→LUMO (86.6%)
	(432 nm)		HOMO-2→LUMO+7 (6.6%)
T ₃	3.042 eV	0	HOMO→LUMO (32.8%)
	(408 nm)		HOMO-1→LUMO (21.4%)
			HOMO-3→LUMO (13.7%)
			HOMO-4→LUMO+2 (7.9%)
			HOMO→LUMO+3 (7.0%)
T4	3.210 eV	0	HOMO-4→LUMO (31.4%)
	(386 nm)		HOMO→LUMO+1 (21.8%)
			HOMO-3→LUMO+2 (9.4%)
			HOMO-1→LUMO (5.2%)
			HOMO→LUMO+2 (4.7%)
T5	3.768 eV	0	HOMO-3→LUMO (22.7%)
	(329 nm)		HOMO→LUMO+1 (20.1%)
			HOMO-1→LUMO (15.0%)
			HOMO→LUMO+2 (14.5%)
			HOMO-4→LUMO (11.4%)

Figure S3. Molecular orbitals of 2 calculated at ω B97X-D3/def2-TZVP level.

Figure S4. Energy diagrams of 1 (a) and 2 (b), optimized in the lowest singlet excited state.

Figure S5. FT IR spectra of PVA film (a) and BPB@PVA (b).

Figure S6. Change in the delayed emission intensity ratios ($I_{530 \text{ nm}}/I_{460 \text{ nm}}$) by varying concentrations of **2** doped into **BPB@PVA**. $\lambda_{ex} = 325 \text{ nm}$. Delay time = 50 ms.

Figure S7. ¹H NMR spectrum (400 MHz) of BPBA in DMSO-*d*₆.

Figure S8. ¹³C NMR spectrum (101 MHz) of BPBA in DMSO- d_6 .

Figure S9. HR FAB-MS spectra of BPBA.

Figure S10. ¹H NMR spectrum (500 MHz) of 1 in CDCl₃.

Figure S11. ¹³C NMR spectrum (126 MHz) of 1 in DMSO-d₆.

Figure S12. FAB-MS spectra of 1.