Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary Information

Synthesis of 1,1'-diaryl-4,4'-bibenzo[*c*]thiophene derivatives with aryl substituents on the thiophene rings by Stille or Suzuki coupling reaction

Taiki Higashino,^a Yasuto Hara,^a Keiichi Imato,^a Seiji Akiyama,^b Mio Ishida^b and Yousuke Ooyama^{*a}

^aDepartment of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan. E-mail: yooyama@hiroshima-u.ac.jp; Fax: (+81) 82-424-5494 ^bScience & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan

General

Melting points were measured with an AS ONE ATM-02. IR spectra were recorded on a SHIMADZU IRTracer-100 by ATR method. ¹H NMR and ¹³C NMR spectra were recorded on a Varian-400 or -500 FT NMR spectrometer. High-resolution mass spectral data by APCI was acquired on a Thermo Fisher Scientific LTQ Orbitrap XL. Recycling gel permeation chromatography (GPC) was performed using a RI-detector (SHIMADZU RID-20A), an UV-detector (SHIMADZU SPD-20A), and a pomp (SHIMADZU LC-20A) with two columns (Shodex GPC FP-2002). Photoabsorption spectra of solutions were observed with a Shimadzu UV-3600 plus spectrophotometer. Photoabsorption spectra of solids were recorded by a Shimadzu UV-3600 plus spectrophotometer with a calibrated integrating sphere system. Fluorescence spectra of solutions and solids were measured with a HORIBA FluoroMax-4 spectrofluorometer. The fluorescence quantum yields in solution and in solid state were determined using a HORIBA FluoroMax-4 spectrofluorometer with a calibrated integrating sphere system. Fluorescence decay measurements were performed on a HORIBA DeltaFlex modular fluorescence lifetime system, using a Nano LED pulsed diode excitation source (370 nm). Cyclic voltammetry (CV) curves were recorded in acetonitrile/Bu₄NClO₄ (0.1 M) or DMF/Bu₄NClO₄ (0.1 M) solution with a three-electrode system consisting of Ag/Ag⁺ (AgNO₃ in acetonitrile/Bu₄NClO₄ or DMF/Bu₄NClO₄) as the reference electrode, a Pt plate as the working electrode and a Pt wire as the counter electrode using an Electrochemical Measurement System HZ-7000 (HOKUTO DENKO). Powder X-ray diffraction measurements were performed on a Rigaku MiniFlex600-C/CM diffractometer with Cu Ka radiator. Differential scanning calorimetry was carried out using a Shimadzu DSC-60.

Synthesis

1,1'-dibromo-4,4'-bibenzo[c]thiophene (1,1'-Br-4,4'-BBT). To a THF solution (1.2 mL) of **H4-4,4'-BBT-SO** (0.05 g, 0.17 mmol) under a nitrogen atmosphere at -78 °C was added tetramethylethylenediamine (0.15 mL, 0.99 mmol). After stirring for 10 min, a 1.6 M hexane solution of *n*BuLi (0.62 mL, 0.99 mmol) was added dropwise. After stirring for 10 min at room temperature, the reaction mixture was cooled to -78 °C, and then, a THF solution (4.0 mL) of tetrabromomethane (0.06 g, 0.83 mmol) was added dropwise. After stirring for 2 h at room temperature, the reaction mixture was quenched with water, and then, the solution was extracted with dichloromethane. The dichloromethane extract was dried over anhydrous MgSO4, filtrated and concentrated. Recycling GPC (chloroform as eluent) for the residue was performed to give **1,1'-Br-4,4'-BBT** (0.016 g, yield 23 %) as a dark-yellow solid; decomposed at around 60 °C; FT-IR (ATR): $\tilde{v} = 3107, 3057, 1593, 1344, 1301, 1188 \text{ cm}^{-1}; {}^1\text{H} NMR$ (500 MHz, acetone-*d*₆): $\delta = 7.26$ (d, J = 6.5 Hz, 2H), 7.34–7.38 (m, 2H), 7.57 (dt, 2H), 7.74 (s, 2H) ppm; It was difficult to obtain the ${}^{13}\text{C}$ NMR spectrum due to the thermal instability of **1,1'-Br-4,4'-BBT** in any deuterated solvents; HRMS (APCI): *m/z* (%):[M+H⁺] calcd. for C₁₆H₉Br₂S₂, 422.85069; found 422.85135.

1,1'-Bis(4-(*tert***-butyl)phenyl)-4,4'-bibenzo[***c***]thiophene (1,1'-PhtBu-4,4'-BBT). (Method A: previous work)¹ A solution of 1,1'-Sn-4,4'-BBT** (0.20 g, 0.34 mmol), 1-bromo-4-*tert*-butylbenzene (0.12 g, 1.02 mmol), and Pd(PPh₃)₄ (0.02 g, 0.02 mmol) in toluene (2.0 mL) was stirred for 21 h at 110 °C under a nitrogen atmosphere. After concentrating under reduced pressure, the resulting residue was dissolved in

dichloromethane and washed with water. The dichloromethane extract was dried over anhydrous MgSO₄, filtrated and concentrated. Recycling GPC (toluene as eluent) for the residue was performed to give 1,1'-PhtBu-4,4'-BBT (0.08 g, yield 44 %) as a yellow solid. (Method B) A solution of 1,1'-Br-4,4'-BBT (0.030 g, 0.071 mmol), 4-tert-butylphenylboronic acid (0.038 g, 0.212 mmol), Pd(PPh₃)₄ (0.008 g, 0.007 mmol), and Na₂CO₃ aq. (1.0 mL, 0.707 mmol) in a mixture of toluene (1.0 mL) and ethanol (1.5 mL) was stirred for 21 h at room temperature under a nitrogen atmosphere. After concentrating under reduced pressure, the resulting residue was dissolved in dichloromethane and washed with water. The dichloromethane extract was dried over anhydrous MgSO4, filtrated and concentrated. Recycling GPC (chloroform as eluent) for the residue was performed to give 1,1'-PhtBu-4,4'-BBT (0.012 g, yield 32 %) as a yellow solid; m.p. 202–205 °C; FT-IR (ATR): $\tilde{v} = 3103, 2953, 2900, 2664, 1862, 1512, 1359$ cm⁻¹; ¹H NMR (500 MHz, acetone- d_6): $\delta = 1.41$ (s, 18H, Ph-C(CH₃)₃), 7.26–7.30 (m, 4H, CH at 5,5',6,6'-posions on Ph-Ph), 7.62–7.66 (m, 6H, CH at 3,3'-posions on Th and CH at 3,5'-posions on tBuPh), 7.69–7.71 (m, 4H, CH at 2,6'-posions on *t*BuPh), 7.90–7.95 (m, 2H, CH at 7,7'-posions on Ph-Ph) ppm; ¹³C NMR (125 MHz, acetone- d_6): $\delta = 31.61, 35.27, 117.06, 121.28, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 124.76, 125.14, 127.05, 129.68, 132.50, 134.90, 135.32, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 134.90, 135.32, 134.90, 13$ 136.09, 139.97, 151.57 ppm; HRMS (APCI): m/z (%): [M+H⁺] calcd. for C₃₆H₃₅S₂, 531.21747; found 531.21893.

1,1'-Bis(4-cyanophenyl)-4,4'-bibenzo[c]thiophene (1,1'-PhCN-4,4'-BBT). (Method A) A solution of 1,1'-Sn-4,4'-BBT (0.087 g, 0.147 mmol), 4-bromobenzonitrile (0.080 g, 0.441 mmol), and Pd(PPh₃)₄ (0.008 g, 0.007 mmol) in toluene (9.0 mL) was stirred for 26 h at 110 °C under a nitrogen atmosphere. After concentrating under reduced pressure, the resulting residue was dissolved in dichloromethane and washed with water. The dichloromethane extract was dried over anhydrous MgSO₄, filtrated and concentrated. The residue was chromatographed on silica gel (dichloromethane : hexane = 1 : 1 as eluent) to give 1,1'-PhCN-4,4'-BBT (0.034 g, yield 49 %) as a yellow solid. (Method B) A solution of 1,1'-Br-4,4'-BBT (0.031 g, 0.073 mmol), 4-cyanophenylboronic acid (0.032 g, 0.219 mmol), Pd(PPh₃)₄ (0.008 g, 0.007 mmol), and Na₂CO₃ aq. (1.0 mL, 0.730 mmol) in a mixture of toluene (1.0 mL) and ethanol (1.5 mL) was stirred for 25 h at room temperature under a nitrogen atmosphere. After concentrating under reduced pressure, the resulting residue was dissolved in dichloromethane and washed with water. The dichloromethane extract was dried over anhydrous MgSO4, filtrated and concentrated. The residue was chromatographed on silica gel (dichloromethane : hexane = 1 : 1 as eluent) to give 1,1'-PhCN-4,4'-BBT (0.006 g, yield 18 %) as a yellow solid; decomposed at around 245 °C; FT-IR (ATR): $\tilde{v} = 2222, 1601, 1510, 1510, 1601, 1510, 1601$ 1176 cm⁻¹; ¹H NMR (400 MHz, dichloromethane- d_2): $\delta = 7.26 - 7.30$ (dd, J = 1.2 and 6.6 Hz, 2H, CH at 5,5'-posions on Ph-Ph), 7.31–7.35 (m, 2H, CH at 6,6'-posions on Ph-Ph), 7.67 (s, 2H, CH at 3,3'-posions on Th), 7.81 (d, J = 8.7 Hz, 4H, C<u>H</u> at 3,5'-posions on CNPh), 7.85 (d, J = 8.6 Hz, 4H, C<u>H</u> at 2,6'-posions on CNPh), 7.91–7.94 (dt, 2H, CH at 7,7'-posions on Ph-Ph) ppm; It was difficult to obtain the ¹³C NMR spectrum due to the low solubility of 1,1'-PhCN-4,4'-BBT in any deuterated solvents; HRMS (APCI): m/z (%): $[M+H^+]$ calcd. for C₃₀H₁₇N₂S₂, 469.08277; found 469.08282.

Ref. 1: K. Obayashi, S. Miho, M. Yasui, K. Imato, S. Akiyama, M. Ishida, and Y. Ooyama, *New J. Chem.*, 2021, **45**, 17085–17094.

X-ray crystallographic analysis: The reflection data of **1,1'-PhtBu-4,4'-BBT** were collected at 100 K on a Rigaku XtaLAB Synergy-R/DW diffractometer using monochromated Mo-K α ($\lambda = 0.71073$ Å). The structure was solved by the SHELXT 2014/5 method and refined based on full-matrix least squares on F^2 using SHELXL-2018/3. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were fixed geometrically and not refined. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre (CCDC 2248179).

Crystal of 1,1'-PhtBu-4,4'-BBT: A suitable crystal of **1,1'-PhtBu-4,4'-BBT** was recrystallized from acetone as yellow plate crystal, air stable. Crystallographic data: $C_{36}H_{34}S_2$, M = 530.75, monoclinic, a = 10.3004(2), b = 11.6368(3), c = 47.0635(14) Å, $\beta = 92.625(3)^\circ$, V = 5635.3(3) Å³, $D_{calcd} = 1.251$ g cm⁻³, space group $P2_1/n$ (no.14), Z = 8, 14483 reflections measured, 10317 unique ($R_{int} = 0.0726$), which were used in all calculations. The final R_1 (reflections) = 0.0664 (7324) [$I > 2\sigma(I)$], wR_2 (reflections) = 0.1642 (10317). GOF = 1.049.

1,1 -1 II/DU-4,4 -DD1 (CCDC 22401	79).
Compound	1,1'-Ph <i>t</i> Bu-4,4'-BBT
Molecular formula	$C_{36}H_{34}S_2$
Formula weight	530.75
Number of reflection used for unit	51532 (3.606-50.7)
cell determination (2 θ range/°)	
Temperature/K	100
Crystal System	monoclinic
Space group	$P2_{1}/n$
a/Å	10.3004(2)
b/Å	11.6368(3)
c/Å	47.0635(14)
$\alpha/^{\circ}$	
β/°	92.625(3)
γ [/] °,	
V/Å ³	5635.3(3)
Z	8
$D_c/g \text{ cm}^{-3}$	1.251
F(000)	2256
Radiation	Mo-Ka ($\lambda = 0.71073$ Å)
Crystal size/mm ³	0.145×0.113×0.024
Range of induces <i>h</i> ; <i>k</i> ; <i>l</i>	-12, 12; -14, 14; -56, 56
Reflections collected (unique)	10317
Reflection observed with $I_0 > 2\sigma I_0$	7324
Number of parameters	697
Final R indexes $[I_0>2\sigma I_0]$	$R_1 = 0.0664, wR_2 = 0.1488$
Final R indexes [all data]	$R_1 = 0.0994, wR_2 = 0.1642$
Goodness-of-fit on F ²	1.049
Max. Shift/Error in final cycle	0.00
Max. peak in final diff. map/e Å ⁻³	0.58
Min. peak in final diff. map/e Å ⁻³	-0.48

Table S1 Crystal data and structure refinement parameters for1.1'-PhtBu-4.4'-BBT (CCDC 2248179).

Fig. S1 ¹H NMR (500 MHz) spectrum of 1,1'-Br-4,4'-BBT in acetone- d_6 .

Fig. S2 ¹H NMR (400 MHz) spectrum of 1,1'-PhCN-4,4'-BBT in dichloromethane-*d*₂.

Fig. S3 Crystal structure of BBT-PhtBu: molecular packing structure.

Fig. S4 XRD patterns of (a) BBT-H, (b) BBT-PhtBu, and (c) BBT-PhCN.

Fig. S5 Cyclic voltammograms of **BBT-H** and **BBT-Ph/Bu** in acetonitrile containing 0.1 M Bu₄NClO₄ and **BBT-PhCN** in DMF containing 0.1 M Bu₄NClO₄ at a scan rate of 100 mV s⁻¹. The arrow denotes the direction of the potential scan

Fig. S6 Energy level diagram, HOMO and LUMO of **BBT-H**, **BBT-Ph***t***Bu** and **BBT-PhCN** derived from DFT calculations at the B3LYP/6-31G(d,p) level. Numbers in parentheses are the experimental values.

Fig. S7 Photoabsorption spectra of BBT-H, BBT-Ph/Bu and BBT-PhCN derived from TD-DFT calculations.

Center	Atomic	Atomic	Coordinates	(Angstroms)	
Number	Number	Туре	Х	Y	Ζ
1	С	0	3.014613	0.092656	0.246587
2	С	0	3.469568	1.192933	1.038642
3	С	0	2.586725	2.181467	1.372708
4	С	0	1.21901	2.12832	0.956653
5	С	0	0.713504	1.089175	0.210163
6	С	0	1.622641	0.033794	-0.17567
7	S	0	2.781034	-2.035549	-1.172737
8	С	0	-1.622642	0.033794	0.17567
9	С	0	-0.713504	1.089175	-0.210163
10	С	0	-1.21901	2.128319	-0.956655
11	С	0	-2.586726	2.181466	-1.372709
12	С	0	-3.469569	1.192933	-1.038641
13	С	0	-3.014613	0.092656	-0.246585
14	S	0	-2.781033	-2.035551	1.172734
15	Н	0	4.506637	1.23322	1.358132
16	Н	0	2.916292	3.02579	1.971013
17	Н	0	0.549238	2.927872	1.258602
18	Н	0	-0.549238	2.927871	-1.258604
19	Н	0	-2.916292	3.025789	-1.971014
20	Н	0	-4.506638	1.23322	-1.35813
21	С	0	3.751548	-0.981598	-0.225472
22	Н	0	4.800145	-1.191301	-0.070182
23	С	0	1.369808	-1.078593	-0.963293
24	Н	0	0.437756	-1.375725	-1.419233
25	С	0	-1.369809	-1.078591	0.963295
26	Н	0	-0.437757	-1.375723	1.419236
27	С	0	-3.751549	-0.981596	0.225475
28	Н	0	-4.800146	-1.191299	0.070187

Table S2 Geometrical coordinates of the optimized **4,4'-BBT** by DFT at the B3LYP/6-31G(d,p) level.² Cartesian coordinates:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	С	0	1.620738	1.023449	-0.238209
2	С	0	3.025876	1.083365	0.133791
3	С	0	3.480829	2.153026	0.966515
4	С	0	2.599335	3.125970	1.351629
5	С	0	1.227636	3.087165	0.953848
6	С	0	0.714470	2.062505	0.193584
7	С	0	1.336319	-0.081327	-1.024700
8	С	0	3.769099	0.014305	-0.378440
9	Н	0	4.513994	2.178448	1.294241
10	Н	0	2.936109	3.941171	1.985304
11	Н	0	0.560206	3.875452	1.288908
12	С	0	-0.723119	2.057954	-0.192642
13	С	0	-1.620980	1.009232	0.233300
14	С	0	-1.244761	3.083294	-0.946208
15	С	0	-3.026897	1.060861	-0.136954
16	С	0	-1.327522	-0.098276	1.012655
17	С	0	-2.617111	3.114170	-1.342468
18	Н	0	-0.583701	3.878787	-1.276837
19	С	0	-3.490857	2.132239	-0.962509
20	С	0	-3.761439	-0.016958	0.369271
21	Н	0	-2.960676	3.930748	-1.970701
22	Н	0	-4.524518	2.151998	-1.289170
23	S	0	2.735530	-1.032475	-1.302779
24	S	0	-2.719378	-1.061424	1.286306
25	С	0	-5.191529	-0.323611	0.241465
26	С	0	-5.642122	-1.634856	0.021131
27	С	0	-6.168773	0.683249	0.357653
28	С	0	-7.001455	-1.925985	-0.083290
29	Н	0	-4.916929	-2.436052	-0.089229
30	С	0	-7.521328	0.384853	0.239351
31	Н	0	-5.862729	1.701833	0.572165
32	С	0	-7.977949	-0.925731	0.015913
33	Н	0	-7.291094	-2.955810	-0.257229
34	Н	0	-8.237111	1.195472	0.340234

Table S3 Geometrical coordinates of the optimized 1,1'-PhtBu-4,4'-BBT by DFT at theB3LYP/6-31G(d,p) level.2

Cartesian coordinates:

35	С	0	5.201196	-0.282539	-0.250771
36	С	0	6.170612	0.728347	-0.353774
37	С	0	5.659903	-1.596599	-0.041115
38	С	0	7.529954	0.440675	-0.233028
39	Н	0	5.859547	1.747053	-0.560373
40	С	0	7.017124	-1.875039	0.064558
41	Н	0	4.939188	-2.403175	0.058676
42	С	0	7.991545	-0.865298	-0.021292
43	Н	0	8.234102	1.259752	-0.323341
44	Н	0	7.320017	-2.904717	0.230199
45	С	0	-9.485922	-1.207807	-0.103694
46	С	0	-10.194232	-0.784326	1.205258
47	С	0	-10.068685	-0.397330	-1.285873
48	С	0	-9.783967	-2.698677	-0.350176
49	Н	0	-9.806257	-1.347436	2.060215
50	Н	0	-10.056906	0.280065	1.417014
51	Н	0	-11.271276	-0.973248	1.133891
52	Н	0	-9.591034	-0.681927	-2.229011
53	Н	0	-11.144773	-0.581379	-1.380499
54	Н	0	-9.926232	0.678901	-1.151312
55	Н	0	-10.865229	-2.850065	-0.429325
56	Н	0	-9.332181	-3.056357	-1.281161
57	Н	0	-9.422617	-3.327826	0.469783
58	С	0	9.483081	-1.218948	0.113186
59	С	0	9.735187	-1.865939	1.496049
60	С	0	9.877491	-2.219551	-0.999142
61	С	0	10.390958	0.019082	-0.010132
62	Н	0	9.471771	-1.176559	2.304760
63	Н	0	9.148300	-2.779060	1.631881
64	Н	0	10.792881	-2.130630	1.605747
65	Н	0	9.716301	-1.785638	-1.991275
66	Н	0	10.936574	-2.487300	-0.912821
67	Н	0	9.295294	-3.143808	-0.940900
68	Н	0	11.438677	-0.280433	0.094187
69	Н	0	10.283797	0.508253	-0.983784
70	Н	0	10.180459	0.758259	0.769674
71	Н	0	0.386327	-0.369831	-1.448330
72	Н	0	-0.374954	-0.382235	1.433564

Center	Atomic	Atomic	Coordina	ates (Angstr	roms)
Number	Number	Туре	Х	Y	Ζ
1	С	0	-0.249146	1.611493	0.866384
2	С	0	0.120699	3.016993	0.901592
3	С	0	0.865542	3.510639	2.017186
4	С	0	1.236605	2.647208	3.012357
5	С	0	0.903384	1.260144	2.958729
6	С	0	0.179881	0.721690	1.920006
7	С	0	-0.395896	3.738311	-0.183192
8	Н	0	1.108075	4.564956	2.083962
9	Н	0	1.795246	3.017025	3.866865
10	Н	0	1.237068	0.607500	3.759591
11	С	0	-0.179881	-0.721690	1.920006
12	С	0	0.249146	-1.611493	0.866384
13	С	0	-0.903384	-1.260144	2.958729
14	С	0	-0.120699	-3.016993	0.901592
15	С	0	-1.236605	-2.647208	3.012357
16	Н	0	-1.237068	-0.607500	3.759591
17	С	0	-0.865542	-3.510639	2.017186
18	С	0	0.395896	-3.738311	-0.183192
19	Н	0	-1.795246	-3.017025	3.866865
20	Н	0	-1.108075	-4.564956	2.083962
21	С	0	-0.236755	5.152114	-0.530686
22	С	0	-1.304628	5.890395	-1.080503
23	С	0	0.997236	5.809469	-0.347514
24	С	0	-1.153412	7.225749	-1.426795
25	Н	0	-2.269605	5.412318	-1.215891
26	С	0	1.153170	7.148693	-0.679028
27	Н	0	1.847973	5.252397	0.027988
28	С	0	0.077847	7.871746	-1.222424
29	Н	0	-1.987123	7.780460	-1.843623
30	Н	0	2.110349	7.638774	-0.536387
31	С	0	0.236755	-5.152114	-0.530686
32	С	0	1.304628	-5.890395	-1.080503
33	С	0	-0.997236	-5.809469	-0.347514
34	С	0	1.153412	-7.225749	-1.426795

Table S4 Geometrical coordinates of the optimized 1,1'-PhCN-4,4'-BBT by DFT at theB3LYP/6-31G(d,p) level.2

Cartesian coordinates:

35	Н	0	2.269605	-5.412318	-1.215891
36	С	0	-1.153170	-7.148693	-0.679028
37	Н	0	-1.847973	-5.252397	0.027988
38	С	0	-0.077847	-7.871746	-1.222424
39	Н	0	1.987123	-7.780460	-1.843623
40	Н	0	-2.110349	-7.638774	-0.536387
41	С	0	-0.236755	-9.252526	-1.568717
42	Ν	0	-0.366177	-10.374434	-1.849540
43	С	0	0.236755	9.252526	-1.568717
44	Ν	0	0.366177	10.374434	-1.849540
45	S	0	-1.338062	2.688549	-1.198553
46	S	0	1.338062	-2.688549	-1.198553
47	С	0	1.050890	-1.310846	-0.224295
48	С	0	-1.050890	1.310846	-0.224295
49	Н	0	-1.470469	0.354420	-0.497486
50	Н	0	1.470469	-0.354420	-0.497486

Ref. 2 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16, Revision B.01*, Gaussian, Inc., Wallingford CT, 2016.