ARTICLE

A phenoxy-bridged trinuclear Ni(II) complex: synthesis, structural elucidation and molecular docking with viral proteins Sunil Kumar^a, Mukesh Choudhary^a*

^a Department of Chemistry, National Institute of Technology Patna, Patna-800005 (Bihar) India.

^{a.} *Corresponding author: <u>mukesh@nitp.ac.in</u>

ARTICLE

6511-254 -10.04 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 6.5 6.0 f1 (ppm) 5.5 5.0 Figure S1. ¹H-NMR spectra of Schiff base ligand (H₃L). Class? 12921-130 120 50 40 30 150 140 110 90 f1 (ppm) Figure S2 .¹³C-NMR spectra of Schiff base ligand (H₃L). DECESSING PARAMET dc balance : 0 : FALSE sexp : 0.2(Hz) : 0.0(s) fft : 1 : TEUE : TEUE machinesters

Figure S3. ¹H-NMR spectra of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$.

Figure S5. FT-IR spectra of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$.

Figure S6. FT-Raman spectra of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$.

Journal Name

Figure S8. UV-Vis spectra of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3]$ (1).

Figure S9. Perspective views of the molecular structures of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ showing various models; (a) Ellipses and wireframe model, (b) Sphere Space-filling model, (c) ball & stick model and (d) Tube & stick model.

Figure S10. Packing view of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ (along the *a*-*c*-axis).

ARTICLE

Figure S11. Cyclic voltammogram curve of a phenoxy-bridged trinuclear nickel(II) complex[Ni₃(μ -L)₂(bipy)₃](**1**) with scan rate at 100 mV/s in DMSO with 1x10⁻³ M TBAP as supporting electrolyte.

Figure S12. Pictorial view of typical initial and final configurations obtained from DFT quantum chemical calculations with the B3LYP method, as exemplified by phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$.

Figure S13. Representation of packing cell fragments into the Fourier synthesis transformation of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$.

Please do not adjust margins

Journal Name

ARTICLE

 Electroplitic (HOMO) Frontier Density
 Nucleoplitic (LYMO) Frontier Density
 Electron Density

Figure S16. The molecular frontier density maps (MFPs) of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ with iso-value of 0.020 to 0.024 a.u., where negative potential decreases in order of red > orange > yellow > green > blue.

Figure S17. Graphical view (Full-portion) of the Hirshfeld surfaces of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ mapped with d_{norm} , d_e , d_i , curvedness, shape index and Fragment patch; red spots represents the closest contacts and blue colour the most distant contacts.

Figure S15. The molecular electrostatic potential maps (MEPs) of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ with iso-value of 0.020 to 0.024 a.u., where negative potential decreases in order of red >orange >yellow >green.

Journal Name

ARTICLE

Figure S18. Graphical view of the Hirshfeld surfaces of a phenoxybridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ mapped with promolecule density, crystal void and deformation density; red spots represents the closest contacts and blue colour the most distant contacts.

Figure S19. Space filling models of energy framework diagrams of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$; (a) Coulomb energy (E_{coul}) , (b) Dispersion energy (E_{dis}) , (c) Total energy (E_{tot}) and (d) Electrostatic energy (E_{elec}) , for cluster of molecules. Hydrogen atoms have been omitted for clarity.

Figure S20. Computed CE-B3LYP estimates of energy components and total energies (kJ/mol) for the closest intermolecular interactions of a phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$.

Ν	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
3	y, x, -z	17.79	HF/3-21G	1.9	-0.7	-8.9	0.0	-6.5
4	-y, x-y, z+2/3	12.24	HF/3-21G	1.9	-8.7	-104.1	0.0	-97.5
1	-y, x-y, z+2/3	17.79	HF/3-21G	1.6	-0.6	-8.9	0.0	-6.8
2	y, x, -z	11.29	HF/3-21G	-24.7	-13.7	-116.0	63.2	-87.3
4	x, y, z	16.08	HF/3-21G	-4.7	-2.1	-12.8	0.0	-17.7
2	x, y, z	16.08	HF/3-21G	-32.3	-5.8	<mark>-41.3</mark>	0.0	-73.9

Scale factors for benchmarked energy models See Mackenzie et al. IUCrJ (2017)

Energy Model	k_ele	k_pol	k_disp	k_rep
CE-HF HF/3-21G electron densities	1.019	0.651	0.901	0.811
CE-B3LYP B3LYP/6-31G(d,p) electron densities	1.057	0.740	0.871	0.618

Figure S21. Graphical view of the total density surfaces representation of the docked phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ inside the active site of the SARS-CoV-2 receptor binding domain (PDB ID: 7MZF); (a & b) with active site binding pocket of hydrogen bond donor and acceptor meshes represented by pink and green colours, respectively; (c & d) surface representation of hydrophobic active site binding pocket represented with blue and grey colours.

Journal Name

Figure S22. Graphical view of the total density surfaces representation of the docked phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ inside the active site of the SARS-CoV-2 Omicron BA.3 variant spike protein (PDB ID: 7XIZ); (a & b) with active site binding pocket of hydrogen bond donor and acceptor meshes represented by pink and green colours, respectively; (c & d) surface representation of hydrophobic active site binding pocket represented with blue and grey colours.

Figure S23. Graphical view of the total density surfaces representation of the docked phenoxy-bridged trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ inside the active site of the HIV-1 protease virus (PDB ID: 7WCQ); (a & b) with active site binding pocket of hydrogen bond donor and acceptor meshes represented by pink and green colours, respectively; (c & d) surface representation of hydrophobic active site binding pocket represented with blue and grey colours.

ARTICLE

Figure S24. Percentage of Cell viability of HEK 293 and HeLa cells with increasing concentration of a trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ (0–500 μ M) as quantified by MTT assay.

Table S1. Establishment of the structural activity relationship (SAR) between the bond lengths (Å) from X-ray crystallography of a trinuclear nickel(II) complex $[Ni_3(\mu-L)_2(bipy)_3](1)$ and theoretical data obtained from with SARS-CoV-2 RBD protein, Omicron BA.3 variant spike (PDB ID: 7XIZ) and HIV protease virus(PDB ID: 7WCQ) after molecular docking.

Complex	Bond	Exp. bond	Theoretical bond lengths (Å)			
		lengths (Å)	(PDB ID:	(PDB ID:	(PDB	
			7MZF)	7XIZ)	ID:7WCQ)	
	N(1)-Ni(1)	1.99(3)	1.98	1.98	1.99	
	N(4)-Ni(1)	2.14(3)	2.13	2.13	2.15	
	N(3)-Ni(1)	2.09(3)	2.07	2.08	2.09	
	N(5)-Ni(2)	2.08(3)	2.10	2.07	2.09	
	N(2)-N(1)	1.31(4)	1.29	1.29	1.30	
(1)	O(1)-Ni(2)	2.07(2)	2.06	2.05	2.08	
	O(1)-Ni(1)	2.07(2)	2.08	2.07	2.06	
	O(2)-Ni(2)	2.02(2)	2.01	2.03	2.02	
	O(2)-Ni(1)#1	2.041(19)	2.041	2.043	2.042	
	O(3)-Ni(1)	1.98(2)	1.97	1.97	1.98	