Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information for

An iron-based metal-organic framework for selective CO₂ adsorption and efficient anode material for lithium-ion battery

Y B. N. Tran,^{ab} Phuong T. K. Nguyen,^{*ab} and Tuan Loi Nguyen^{ab}

^aInstitute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Viet Nam

^bFaculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Viet Nam.

*To whom correspondence should be addressed: Email, nguyentkieuphuong1@duytan.edu.vn.

Table of Contents

Section S1	Materials and Analytical Techniques	S3 - S4
Section S2	Characterizations, Powder X-Ray Diffraction and Structural Fe-CPB	Refinement of S5 – S12
Section S3	Gas Adsorption Studies of Fe-CPB	S13 - S14
Section S4	Electrochemical Studies of Fe-CPB.	S15 - S17
Section S5	Post-Cycling Characterizations of Fe-CPB	S18 - S20
Section S6	References	S21

Section S1: Materials and Analytical Techniques

Chemicals and Materials

Copper(I) iodide (CuI, \geq 99.5%), 1,8-diazabicylcloundec-7-ene (DBU, \geq 99.0%), sodium hydroxide (NaOH, reagent grade, \geq 98%), trimesic acid (H₃BTC, 95%), iron (III) acetylacetonate (Fe(acac)₃, \geq 99.9%), iron (III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O, \geq 99.9%), poly(vinylidene fluoride) (PVDF, average Mw ~534,000 by GPC), lithium hexafluorophosphate solution (LiPF₆, 1 M, in ethylene carbonate (EC) : diethyl carbonate (DEC) = 1:1, v/v), Celgard 2400, and hydrochloric acid (HCl, 1 M) were obtained from Sigma-Aldrich. Methyl-4-iodobenzoate (98%), bis(tripheny-phosphine)palladium(II) chloride (PdCl₂(PPh₃)₂, 98%), diethylamine (DEA, 99.5%), trimethylsilylacetylene (98%), dicobalt octacarbonyl (Co₂(CO)₈, 95%), anhydrous 1,4dioxane (99.8%), anhydrous tetrahydrofuran (THF, 99.85%), anhydrous methanol (MeOH, 99.5%), and N,N-dimethylformamide (DMF, 99.8%) were purchased from Acros Organics. Anhydrous dichloromethane (DCM), ammonium chloride (99.998%), anhydrous sodium sulfate, N-methyl-2-pyrrolidone (NMP, 99.5%), and glacial acetic acid (CH₃COOH, ≥99.85%) were obtained from Merck Chemical Co. Carbon black Super P (99+) was obtained from Alfa Aesar. Copper foil (thickness 12 µm, >99.9%) and lithium foil (thickness 0.1 mm, >99.9%) were purchased from Tob New Energy Company. Diethylamine and deionized water (ultrapure, 17.8 M Ω ·cm resistivity, obtained from a Barnstead Easypure II system) were degassed with a stream of N₂ for 5 min prior to addition into the Sonogashira coupling reactions. All other chemicals were used without further purification unless otherwise noted.

Synthesis of Fe-MIL-100. Fe-MIL-100 was synthesized following previous works with slight modifications.^{S1,S2} Fe(NO₃)₃·9H₂O (3.26 g, 9.2 mmol) and trimesic acid (1.13 g, 5.4 mmol) were dissolved in 40 mL water. The reactant mixture was stirred at room temperature for 1h and accordingly loaded in a Teflon-lined pressure vessel. The reactor vessel was heated up to 160°C for 12h to produce a light orange solid. The solid was filtrated, washed with deionized water ($3 \times 10 \text{ mL}$), and treated in hot deionized water (10 mL, ~ 80° C) for 3h to eliminate the residuals iron salt and H₃BTC linker. The MOF solid was then dried at room temperature for 18 h, followed by heating at 80 °C under vacuum for an additional 24 h.

Analytical Techniques

Optical microscope images were collected on Nikon SMZ1000 Zoom Stereomicroscope. Elemental microanalyses (EA) were performed on a LECO CHNS-932 Analyzer. Thermal gravimetric analysis (TGA) was performed on a TA Q500 thermal analysis system with the sample held in a platinum pan in a continuous airflow. Field-emission Scanning Electron Microscope (FE-SEM) was performed on an ultralow voltage imaging with Hitachi's S-4800 FE-SEM operating at an accelerating voltage of 1 kV. Energy dispersive X-ray analyzer (EDX) was conducted on a Horiba H-7593.

Section S2: Characterizations, Powder X-Ray Diffraction and Structural Refinement of Fe-CPB

Figure S1. Optical microscope image of Fe-CPB.

Figure S2. SEM image of Fe-CPB.

Empirical formula, Space		$C_{64}H_{58}Fe_4N_4O_{20}, P2/c$					
group							
Refined unit cell		$a = 28.1854$ Å, $b = 15.6499$ Å, $c = 13.5063$ Å, $\alpha = \gamma =$					
		$90.0000^\circ, \beta = 98.8648^\circ.$					
Pawley refinem	ent	$R_{wp} = 3.70\%$,	<i>R_{wp}</i> (w/o backg	(ground) = 4.48	$N_0, R_p = 1.82\%$		
Atom label	Atom type	x	У	Z	Site Occupancy		
Fe3	Fe	0.32852	-0.03371	0.5913	1		
Fe4	Fe	0.34647	-0.06143	0.84129	1		
Fe1	Fe	0.17428	0.45889	0.8682	1		
Fe2	Fe	0.17131	0.47138	0.61962	1		
O19	0	0.32	0.05124	0.47024	1		
O13	0	0.3556	0.90351	0.71015	1		
02	0	0.15449	1.41183	0.73616	1		
C50	С	0.00155	0.56292	0.93208	1		
H50A	Н	-0.01507	0.58593	0.87052	1		
H50B	Н	0.02142	0.60646	0.96737	1		
H50C	Н	-0.02134	0.54347	0.97283	1		
09	0	0.19178	0.546	0.98781	1		
O11	0	0.24509	0.4617	0.8364	1		
012	0	0.23646	0.51931	0.68359	1		
O15	0	0.37514	0.05827	0.8302	1		
O3	0	0.25854	1.00681	0.61804	1		
O16	0	0.36794	0.06515	0.66448	1		
05	0	0.13265	0.58154	0.62683	1		
O14	0	0.4013	0.92085	0.59456	1		
04	0	0.27666	1.00503	0.78309	1		
01	0	0.10712	1.41798	0.59246	1		
08	0	0.19285	0.35426	0.96261	1		
017	0	0.41667	-0.09579	0.91548	1		

Table S1. Unit cell parameters and fractional atomic coordinates for the refined crystal Fe-CPB.

O6	0	0.14231	0.56443	0.79071	
O18	0	0.3074	-0.13647	0.49577	
O20	0	0.3162	0.17216	0.39055	
O10	0	0.20969	0.6623	1.07273	
07	0	0.10329	0.43836	0.90446	
C32	С	0.46747	0.4856	0.76893	
C47	С	0.38178	0.09308	0.75058	
C45	С	0.40976	0.17594	0.75763	
C29	С	0.41404	0.4858	0.76548	
C33	С	0.49226	0.56297	0.77008	
С9	С	0.04689	0.99521	0.75295	
C5	С	0.04724	1.15544	0.74479	
C40	С	0.39045	0.87949	0.66576	
C26	С	0.31477	0.48921	0.76346	
C41	С	0.49248	0.40759	0.77287	
C42	С	0.46441	0.32599	0.7681	
C34	С	0.46534	0.64543	0.74888	
C8	С	0.02332	1.07272	0.76326	
C37	С	0.41585	0.7978	0.69698	
C21	С	0.09992	0.68589	0.72529	
C18	С	0.04907	0.83546	0.75047	
C16	С	0.2478	1.00476	0.7039	
N1	N	0.47569	-0.08756	1.04811	
C17	С	0.02346	0.9177	0.76368	
C36	С	0.41195	0.75735	0.78635	
H36	Н	0.39266	0.78077	0.82943	
C49	С	0.00693	0.41042	0.8828	
H49A	Н	0.02419	0.37952	0.8383	
H49B	Н	-0.02517	0.4214	0.85	
H49C	Н	0.00585	0.37708	0.9421	
C25	С	0.26116	0.48957	0.76125	
ļ	1	I I	I I		I

C13	С	0.19534	1.00245	0.7143
C35	С	0.43668	0.682	0.8121
H35	Н	0.43401	0.6556	0.87273
C10	С	0.09838	0.99616	0.73676
C2	С	0.09361	1.30536	0.70214
C7	С	0.10364	1.26839	0.79566
H7	Н	0.12587	1.29373	0.84501
C24	С	0.12696	0.6043	0.7127
C27	С	0.34564	0.4781	0.85202
H27	Н	0.33337	0.47191	0.91169
C43	С	0.44144	0.29571	0.67737
H43	Н	0.44397	0.32575	0.61903
C01I	С	0.30704	0.12962	0.46268
C31	С	0.33357	0.49877	0.67595
H31	Н	0.31313	0.50633	0.61561
C30	С	0.38323	0.49733	0.67723
H30	Н	0.39557	0.50412	0.61775
C6	С	0.08079	1.1939	0.81651
H6	Н	0.08808	1.16924	0.87963
C39	С	0.46799	0.68547	0.65837
H39	Н	0.4865	0.6613	0.61436
C22	С	0.08031	0.73327	0.64314
H22	Н	0.08378	0.71514	0.57911
C12	С	0.1819	0.98251	0.80542
H12	Н	0.20538	0.97158	0.86028
C23	С	0.05543	0.80793	0.65573
H23	Н	0.0428	0.83999	0.59989
C44	С	0.41456	0.22096	0.67187
H44	Н	0.39969	0.20109	0.60991
C46	С	0.43173	0.20677	0.84857
H46	Н	0.42829	0.17766	0.90712
I	I	I I	I	

C1	C	0.11913	1.38313	0.6753	1	
C28	С	0.395	0.47609	0.85278	1	
H28	Н	0.41543	0.46807	0.91307	1	
C56	С	0.43386	-0.06405	0.99684	1	
H56	Н	0.41655	-0.02146	1.02343	1	
C62	С	0.45902	0.28105	0.85385	1	
H62	Н	0.47385	0.30082	0.91594	1	
C14	С	0.15997	1.01896	0.6342	1	
H14	Н	0.16846	1.03196	0.57206	1	
C38	С	0.44369	0.76031	0.63273	1	
H38	Н	0.44594	0.78612	0.57163	1	
C11	С	0.13389	0.97849	0.81634	1	
H11	Н	0.12549	0.96363	0.87799	1	
N2	Ν	0.27313	-0.2012	0.3554	1	
C19	С	0.06856	0.78748	0.8319	1	
H19	Н	0.06469	0.80491	0.89601	1	
C15	С	0.11178	1.01638	0.64512	1	
H15	Н	0.08834	1.02824	0.59056	1	
C20	С	0.09404	0.71304	0.81942	1	
H20	Н	0.10719	0.68141	0.87521	1	
C54	С	0.21125	0.62058	0.99628	1	
C3	С	0.05961	1.26764	0.63083	1	
H3	Н	0.05219	1.29224	0.56761	1	
N3	Ν	0.23068	0.29315	1.10271	1	
C4	С	0.03666	1.19405	0.65251	1	
H4	Н	0.01357	1.16992	0.60397	1	
C59	С	0.27771	-0.14024	0.42081	1	
H59	Н	0.25618	-0.09497	0.40921	1	
C028	С	0.27988	0.16845	0.53881	1	
H02A	Н	0.25065	0.13727	0.53993	1	
H02B	Н	0.27244	0.22697	0.52143	1	
I	I	l l		I	I	I

H02C	Н	0.29922	0.16608	0.60383	1
C51	С	0.22451	0.35266	1.03596	1
H51	Н	0.2459	0.39824	1.04412	1
C58	С	0.49308	-0.05313	1.14721	1
H58A	Н	0.4716	-0.00928	1.16289	1
H58B	Н	0.52453	-0.02931	1.14794	1
H58C	Н	0.49458	-0.09798	1.19602	1
C57	С	0.50412	-0.15239	1.00846	1
H57A	Н	0.50445	-0.20332	1.04823	1
H57B	Н	0.53637	-0.13202	1.0104	1
H57C	Н	0.49041	-0.16493	0.94049	1
C55	С	0.23604	0.65621	0.91488	1
H55A	Н	0.26865	0.63633	0.92375	1
H55B	Н	0.23572	0.71748	0.91779	1
H55C	Н	0.21965	0.63762	0.85088	1
C48	С	0.07763	0.49115	0.92252	1
H48	Н	0.09242	0.54078	0.94985	1
C61	С	0.23356	-0.20305	0.27107	1
H61A	Н	0.21165	-0.15715	0.27789	1
H61B	Н	0.21688	-0.2566	0.27071	1
H61C	Н	0.2461	-0.19659	0.20934	1
C52	С	0.19807	0.22282	1.09649	1
H52A	Н	0.17221	0.23225	1.04239	1
H52B	Н	0.18535	0.21794	1.15825	1
H52C	Н	0.21461	0.17116	1.08464	1
C60	С	0.30621	-0.26833	0.36421	1
H60A	Н	0.33343	-0.254	0.41335	1
H60B	Н	0.31668	-0.27791	0.30067	1
H60C	Н	0.29141	-0.31932	0.38449	1
C53	С	0.27123	0.29356	1.18437	1

Figure S3. Crystal structure of as-synthesized Fe-CPB with the presence of coordinated DMF. Color code: Fe, orange polyhedra; C, black; O, red; N. green. All H atoms are omitted for clarity.

Figure S4. Comparison of the simulated (black) PXRD pattern from the single crystal data with the experimental as-synthesized (blue) and activated (red) PXRD patterns of Fe-CPB.

Figure S5. TGA traces of activated Fe-CPB at a heating rate of 5 °C min⁻¹ under air flow.

Section S3: Gas Adsorption Studies of Fe-CPB

Gas selectivity calculated by Henry's Law

Virial-type equation was employed for estimation of Henry's constant:

$$\ln P = \ln N + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$

Where *P* is pressure, *N* is the adsorbed amount, *T* is temperature, a_i and b_i are virial coefficient, and *m* and *n* are the number of virial coefficients required for adequate fitting of the isotherms. As a result, Henry's constant (K_H) at the temperature *T* can be calculated:

$$K_{\rm H} = \exp(-b_0) \cdot \exp(-a_0/T)$$

The Henry's Law selectivity for gas component *i* over *j* is calculated:

Figure S6. CO_2 isotherms for Fe-CPB at 273 (red), 283 (green), and 298 K (blue). Filled and open symbols represent adsorption and desorption branches, respectively. The connecting curves are guides for the eye.

Figure S7. CH_4 isotherms for Fe-CPB at 273 (red), 283 (green), and 298 K (blue). Filled and open symbols represent adsorption and desorption branches, respectively. The connecting curves are guides for the eye.

Figure S8. N_2 isotherms for Fe-CPB at 273 (red), 283 (green), and 298 K (blue). Filled and open symbols represent adsorption and desorption branches, respectively. The connecting curves are guides for the eye.

Section S4: Electrochemical Studies of Fe-CPB

Figure S9. Possible sites for Li⁺ insertion at (A) the iron-oxo cluster and (B) the organic CPB linker of Fe-CPB.

Figure S10. Rate capability of Fe-CPB at different current densities

Figure S11. Comparison of the simulated (black) PXRD pattern from the reported structure data with the experimental activated (blue) PXRD of Fe-MIL-100.

Figure S12. The cycling performance of Fe-CPB and Fe-MIL-100 at the current density of 100 mA g^{-1} . Filled and open symbols represent discharge and charge processes, respectively.

#	MOF (wt%)	Capacity/	Current	Cycle	Capacity/mAh	Ref.
		mAh g ⁻¹	density/	number	g ⁻¹ @ Highest	
			mA g ⁻¹		current/mA g ⁻¹	
1	Fe-CPB	634	100	100	416@ 2000	This
	(60 wt%)				_	work
2	Fe-MIL-88B	744.5	60	400	~200@2 000	[S3]
	(60 wt%)					
3	Mn-BTC	600	103	100	250@ 2061	[S4]
	(70 wt%)					
4	Pb-BTC	625	100	150	190@ 2000	[S5]
	(80%)				_	
5	Co-L1	617	100	200	346@ 1000	[S6]
	(80 wt%)					
6	Li-MOF	458	100	80		[\$7]
Ũ	(60 wt%)	100	100			[~,]
7	Zn ₃ (HCOO) ₆	560	60	60	265@ 3000	[S8]
	(70 wt%)					
8	Zn(Im) _{1.5} (abIm) _{0.5}	~190	100	200	75@ 400	[S9]
	(70 wt%)					
				1		1

Table S2. Comparison of pristine MOFs as anodic materials for lithium-ion batteries.

Section S5: Post-Cycling Characterizations of Fe-CPB

The ethylene carbonate solvent reduction reaction proceeds as follows:

 $(CH_2O)_2CO + e^{-} \rightarrow [(CH_2O)_2CO]^{-}$ $2[(CH_2O)_2CO]^{-} \rightarrow C_2H_4 + CH_2(OCO_2)^{-}CH_2(OCO_2)^{-}$ $CH_2(OCO_2)^{-}CH_2(OCO_2)^{-} + 2 \text{ Li}^+ \rightarrow CH_2(OCO_2)\text{Li}CH_2(OCO_2)\text{Li}$

Figure S13. PXRD of pristine Fe-CPB and cycled Fe-CPB electrode after 100 cycles.

Figure S14. FTIR of pristine Fe-CPB and cycled Fe-CPB electrode after 100 cycles.

Figure S15. SEM images of cycled Fe-CPB electrode after 100 cycles.

Figure S16. SEM-EDX analysis of recycled Fe-CPB electrode after 100 cycles

Section S6: References

[S1] P. Horcajada, S. Surblé, C. Serre, D.-Y. Hong, Y.-K. Seo, J.-S. Chang, J.-M. Grenèche, I. Margiolaki and G. Férey, *Chem. Commun.*, 2007, 2820-2822.

[S2] Y.-K. Seo, J. W. Yoon, J. S. Lee, U. H. Lee, Y. K. Hwang, C.-H. Jun, P. Horcajada, C. Serre and J.-S. Chang, *Microporous Mesoporous Mater.*, 2012, **157**, 137-145.

[S3] L. Shen, H. Song and C. Wang, *Electrochim. Acta*, 2017, 235, 595-603.

[S4] S. Maiti, A. Pramanik, U. Manju and S. Mahanty, *ACS Appl. Mater. Interfaces*, 2015, 7, 16357-16363.

[S5] F. Baskoro, H. Q. Wong, K. B. Labasan, C.-W. Cho, C.-W. Pao, P.-Y. Yang, C.-C. Chang, C.-I. Chen, C.-C. Chueh, W. Nie, H. Tsai and H.-J. Yen, *Energy Fuels*, 2021, **35**, 9669-9682.

[S6] T. Gong, X. Lou, E.-Q. Gao and B. Hu, ACS Appl. Mater. Interfaces, 2017, 9, 21839-21847.

[S7] X. Han, F. Yi, T. Sun and J. Sun, *Electrochem. Commun.*, 2012, 25, 136-139.

[S8] K. Saravanan, M. Nagarathinam, P. Balaya and J. J. Vittal, *J. Mater. Chem.*, 2010, **20**, 8329-8335.

[S9] Y. Lin, Q. Zhang, C. Zhao, H. Li, C. Kong, C. Shen and L. Chen, *Chem. Commun.*, 2015, **51**, 697-699.