Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

1 Supporting Information

2 Regulating pore structures of carbon supports toward efficient selective

3 hydrogenation of o-chloronitrobenzene on Pt nanoparticles

- 4
- 5 Yunpeng Lv^{a,1}, Fang Yu^{a,1}, Zhipeng Wang^{a,*}, Haiwei Liu^a, Liyan Wang^a, Jian Song^{a,*}, Yu
- 6 Li^a, Guiqiu Huang^{b,*}, Jian Cui^c
- 7
- 8 aNational Demonstration Center for Experimental Comprehensive Chemical Engineering
- 9 Education, Institute of Green Catalysis, College of Chemistry and Chemical Engineering,

10 North University of China, Taiyuan 030051, China

11 ^bSchool of Petroleum and Chemical Engineering, Guangxi Key Laboratory of Green Chemical

- 12 Materials and Safety Technology, Beibu Gulf University, Qinzhou, 535011, China
- 13 °China North Energy Conservation and Environment Protection Co. Ltd., Beijing,
 14 100070, China

- 16
- 17
- 18

^{*} Corresponding authors:

E-mail addresses: 20200004@nuc.edu.cn (Z.P. Wang); songj@nuc.edu.cn (J. Song);

huangguiqiu@bbgu.edu.cn (G.Q. Huang).

¹ These authors contributed equally in this work.

2 Fig. S1. Small-angel XRD patterns of Pt/CMC-600 samples prepared at H₂ reduction
3 temperature of 100 °C (a), 300 °C (b) and 400 °C (c).

1

Fig. S2. Wide-angel XRD pattern of Pt/CMC-600 sample.

7 Fig. S3. SEM images of Pt/CMC-600 samples prepared at $\rm H_2$ reduction temperature of 100 $^{\rm o}\rm C$

8~ (a), 300 °C (b) and 400 °C (c).

2

Fig. S4. SEM image of Pt/AC sample.

4 Fig. S5. TEM images of Pt/CMC-600 samples prepared at H₂ reduction temperature of 100 °C

5 (a), 300 °C (b) and 400 °C (c).

Fig. S6. TEM images of Pt/AC sample.

2 Fig. S7. Pt nanoparticle size distributions of Pt/CMC-T (T = 600, 700 and 800 °C) and Pt/HMC-

3 600 samples.

4

7 Fig. S8. N₂ adsorption-desorption isotherm (a) and the corresponding PSD (b) of Pt/AC sample.

Fig. S9. The FT-IR spectra of various carbon materials.

	n	17	Δ	0	0	
Sampla	$\mathcal{S}_{\mathrm{BET}}$	V _t	D_{p}	O_b	O_s	D f
Sample	$(m^2 g^{-1})^a$	$(\mathrm{cm}^3 \mathrm{g}^1)^{\mathrm{b}}$	(nm) ^c	(wt%) ^d	(wt%) ^e	NC=0/C-0 ⁻
CMC-600	489	0.29	2.4	6.5	5.7	1.2
CMC-700	476	0.28	2.4	4.1	3.5	0.9
CMC-800	520	0.29	2.1	3.9	3.1	0.6
HMC-600	504	0.22	2.9	6.7	5.5	1.0
AC	1406	1.58	1.3	3.6	2.3	0.7

1 Table S1. The physicochemical properties of CMC-T, HMC-600 and AC carriers.

2 ^aS_{BET}: BET specific surface area. ^b V_t : total pore volume. ^c D_p : the maximum value of the PSD. ^dO_b: bulk oxygen

3 content from elemental analysis. $^{\circ}O_{s}$: surface oxygen content from XPS. $^{f}R_{C=O/C-O}$: the peak area ratio of C=O to

4 C-O from XPS.

.

1 Table S2. Performance comparisons of reported Pt-based catalysts for chloronitrobenzene

Catalyst	Reaction conditions	Conv. / %	Sel. / %	Ref.
Pt/CMC-600	0.5 MPa H ₂ , 60 °C, 60 min.	100	100	This work
Pt/NOMC	1.0 MPa H ₂ , 25 °C, 30 min	100	99.5	1
Pt/CMK-3-HQ	2.0 MPa H ₂ , 80 °C, 60 min	100	99.8	2
Pt/AC	2.0 MPa H ₂ , 60 °C, 60 min	100	98.4	3
Pt@/PtC _x /C	0.1 MPa H ₂ , 80 °C, 60 min	100	99.8	4
Pt/AC	1.0 MPa H ₂ , 30 °C, 40 min	37	84	5
Pt/PU	2.0 MPa H ₂ , 50 °C, 120 min	100	99.5	6
Pt/C(Fe)	1.0 MPa H ₂ , 60 °C, 360 min	100	99.4	7
Pt/Fe ₂ O ₃	0.1 MPa H ₂ , 60 °C, 180 min	100	72	8
Pt/Fe ₃ O ₄	2.0 MPa H ₂ , 50 °C, 120 min	100	99.4	9
Pt-TiO ₂	1.0 MPa H ₂ , 40 °C, 50 min	100	100	10

2 hydrogenation under given reaction conditions.

3 Conv. : chloronitrobenzene conversion; Sel. : target chloroaniline selectivity.

4 Supplementary reference

- 5 [1] J. Liang, X. Zhang, L. Jing and H. Yang, Chin. J. Catal., 2017, 38, 1252-1260.
- 6 [2] Y. Sheng, X. Wang, Z. Xing, X. Chen, X. Zou and X. Lu, ACS Sustain. Chem. Eng., 2019, 7, 89087 8916.
- 8 [3] J. Mao, X. Yan, H. Gu and L. Jiang, Chin. J. Catal., 2009, 30, 182-184.
- 9 [4] K. Li, R. Qin, K. Liu, W. Zhou, N. Liu, Y. Zhang, S. Liu, J. Chen, G. Fu and N. Zheng, ACS Appl.
- 10 Mater. Interfaces, 2021, 13, 52193-52201.
- 11 [5] H. Chen, D. He, Q. He, P. Jiang, G. Zhou and W. Fu, RSC Adv., 2017, 7, 29143-29148.

- 1 [6] L. Hao, Y. Zhao, B. Yu, H. Zhang, H. Xu, J. Xu and Z. Liu, J. Colloid Interface Sci., 2014, 424, 44-48.
- 2 [7] X. Xu, X. Li, H. Gu, Z. Huang and X. Yan, Appl. Catal., A, 2012, 429, 17-23.
- 3 [8] Y. Fang, H. Xiao, N. Sui and W. Y. William, RSC Adv., 2014, 4, 11788-11793.
- 4 [9] C. Lian, H. Liu, C. Xiao, W. Yang, K. Zhang, Y. Liu and Y. Wang, *Chem. Commun.*, 2012, 48, 31245 3126.
- 6 [10] M. Duan, D. He, Y. Ding, J. Sun, P. Jiang and G. Zhou, ChemistrySelect, 2023, 8, 202204430.