Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Nitrogen-Rich Triphenylamine-based Porous Organic Polyaminal for The Adsorption/Separation of C1-C3 Light Hydrocarbons and Efficient Iodine Capture

Qiuyue Liu^{§a}, Lingmei Jiang ^{*§a, b}, Jianhua Liu ^c, Luhong Wei ^c, Jian Zhang ^a, Kuanyu Yuan^{*}

^{*} Corresponding author: Kuanyu Yuan (kylm02010810@aliyun.com) and Lingmei Jiang (jianglingmei@dlut.edu.cn)

[§] Qiuyue Liu and Lingmei Jiang contributed equally to this work.

^{*a*} School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, People's Republic of China

^b Department of Polymer Materials and Engineering, Dalian University of Technology, Dalian

116024, People's Republic of China

^c Shandong Pengrun New Materials Co.Itd, Jiaxiang 272400, People's Republic of China

1. Instrumentation and methods

Fourier-transformed infrared (FT-IR) spectra were characterized using a Bruker TENSOR-27 infrared spectrophotometer from 4000 cm⁻¹ to 400 cm⁻¹ at a resolution of 4 cm⁻¹. The sample was prepared using a conventional KBr disk method. ¹H NMR spectra were measured on a Brucker spectrometer using tetramethylsilane (TMS) as an internal standard at 400 MHz. Solid-state ¹³C CP/MAS NMR was recorded on a Bruker AVANCE500 NMR spectrometer operating under a magnetic field strength of 9.4 T. The ¹³C chemical shifts were referenced externally via the resonance of tetramethylsilane (TMS) of 0 ppm. Elemental analysis was conducted using an Elementarvario EL III elemental analyzer. Thermal gravimetric analysis (TGA) was performed on a Mettler-Toledo model SDTA -854 TG A system under a N2 atmosphere at a heating rate of 10 °C min⁻¹ from room temperature to 800 °C. Wide-angle X-ray diffraction (WAXD) images were collected on a Riguku D/MAX 2550 diffractometer under Cu-K_{α} radiation, at 40 kV and 200 mA, with a 2 θ range of 5-80° (scanning rate of 10° min⁻¹) at room temperature. The UV-vis adsorption spectra of dye solutions were obtained by a TU-1901 spectrophotometer at room temperature. N2 sorption isotherm measurements were characterized at Quantachrome Quadrasorb apparatus with a Micromeritics surface area and pore-size analyzer. Before measurement, the samples were degassed for 12 h at 150 °C. Nonlocal density functional theory (NL-DFT) pore-size distributions (PSDs) were determined by using the carbon/slit-cylindrical pore mode of the Quadrawin software.

Gas Adsorption and Separation Performance

The CH₄, C₂H₆, C₃H₈, and CO₂ adsorption capacities of the synthesized polymers were evaluated according to adsorption isotherms collected at temperatures of 273 and 298 K over a pressure ranging from 0 to 1 bar. The calculated adsorption selectivities of C₃H₈/CH₄, C₂H₆/CH₄, C₃H₈/C₂H₆, C₂H₆/CO₂, C₃H₈/CO₂, and CO₂/CH₄ were based on the initial slope approach at 273 K and 298 K.

Iodine Vapor Adsorption Study

The iodine vapor capture experiment was carried out according the following procedure. Two small weighing bottles were separately charged with activated TPOA-F (10.0 mg) and TPOA-OH (10.0 mg). Then the bottles were placed in a sealed glass container equipped with excess iodine pellets at the bottom. The container was heated at 348 K under ambient pressure. Thereafter, the samples were cooled down to room temperature and weighed at different time intervals. The iodine uptakes of samples were calculated by weight gain according to:

$$\alpha = [(m_2 - m_1)/m_1] \times 100 \text{ wt }\%$$

where α is the iodine uptake, m₁ and m₂ are the mass of sample before and after adsorption of iodine. The iodine capture experiments were repeated three times to ensure the data was authentic and dependable. Meanwhile, the repetition adsorptions process were conducted to ensure the authenticity and dependence of the data. The performance of iodine adsorption in organic solution of polymer was also proceed. The 10.00 mg activated samples were added into the prearranged 300 mg/L iodine/n-hexane (5ml) and the absorbancy of the supernatant at different time were employed by UV-vis.

Iodine release came into being when the iodine-loaded samples (2.0 mg) were immersed in ethanol (10.0 mL) at room temperature. The iodine release behavior was monitored by the UV-vis absorbance of the iodine including ethanol within the monitored time frame.

Figure S1. FT-IR spectra of the used monomer TPA-T, *p*-HBA and *p*-FBA.

Figure S2. WAXD patterns of the TPOA-F and TPOA-OH.

Figure S3. The SEM images for TPOA-F (a) and TPOA-F (c); The TEM images for TPOA-OH

(b) and TPOA-OH (d).

Figure S4. TGA traces of these two TPOAs under nitrogen atmosphere.

Figure S5. Dependencies of the uptake of C₃H₈, C₂H₆, CO₂, and CH₄ on their polarizabilities (a) and critical temperatures (b) in these two polymers.

Figure S6. Variation of the adsorption enthalpies for C₃H₈, C₂H₆, CO₂, and CH₄ with the adsorbed amount in TPOA-F and TPOA-OH.

Figure S7. Virial plots of C_3H_8 (a), C_2H_6 (b), CH_4 (c), and CO_2 (d) for TPOA-F and C_3H_8 (e), C_2H_6 (f), CH_4 (g), and CO_2 (h) for TPOA-OH.

Polymers	Gases	<i>T</i> (K)	$K_H (\mathrm{mol} \mathrm{g}^{-1}\mathrm{Pa}^{-1})$	$A_0 \ln (\text{mol g}^{-1} \operatorname{Pa}^{-1})$	Q_{0} (kJ mol ⁻¹)
TPOA-F	C_3H_8	273	1.421×10 ⁻⁵	-11.161	39.6
ТРОА-ОН		298	2.994×10-6	-12.719	
	C_2H_6	273	5.244×10 ⁻⁷	-14.461	34.2
		298	1.790×10 ⁻⁷	-15.536	
	CU	273	1.501×10 ⁻⁸	-18.015	28.5
	CH_4	298	8.110×10 ⁻⁹	-18.630	
	CO_2	273	8.161×10-8	-16.321	29.6
		298	3.459×10 ⁻⁸	-17.180	
	C_3H_8	273	2.042×10-6	-13.101	36.2
		298	9.501×10-7	-13.867	
	C_2H_6	273	2.818×10-7	-15.082	33.6
		298	1.200×10-7	-15.938	
	CH ₄	273	8.314×10 ⁻⁹	-18.605	25.6
		298	4.663×10-9	-19.184	
	CO ₂	273	6.819×10 ⁻⁸	-16.501	27.2
		298	2.665×10 ⁻⁸	-17.440	

Table S1. Q_0 , K_H and A_0 values for adsorption of CH₄, CO₂, C₂H₆, and C₃H₈ gases

Figure S8. Adsorption selectivity of C_3H_8 , C_2H_6 , CH_4 , and CO_2 for TPOA-F at 273 K (a) and 298 K (b) and TPOA-OH at 273 K (c) and 298 K (d).

Figure S9. Experimental adsorption isotherms for C₃H₈, C₂H₆, CH₄, and CO₂, and their single-site Langmuir-Freundlich simulated curves (solid line) for TPOA-F at 273 K (a) and 298 K (b) & TPOA-OH at 273 K (c) and 298 K (d)

Figure S10. The IAST calculations for the adsorption selectivity of C_2H_6/CH_4 , C_3H_8/CH_4 , and C_3H_8/C_2H_6 & C_3H_8/CO_2 , C_2H_6/CO_2 , and CO_2/CH_4 for TPOAs at 273 K (a) and 298 K (b).

Table S2. Summary of iodine vapor uptake abilities of various porous adsorbents

Adsorbents	Temperature	Pressure	S _{BET}	Iodine uptake	Ref.
	*			1	

	(K)			(wt %)		
TPOA-F	358	1 bar	11179	234	This work	
TPOA-OH	358	1 bar	565	343	This work	
PAPOA-N(CH ₃) ₂ .	358	1 bar	1444	356	Chem. Eng. J. (2022)	
PHPOA-N(CH ₃) ₂	358	1 bar	972	272	137119-137128.	
NAPOP-1	298	1 bar	657	206	L Dolum Soi Dort A	
NAPOP-2	298	1 bar	458	239	J FOIYIII SCI, Fait A.	
NAPOP-3	298	1 bar	702	241	2016:54(12):1724-20	
NAPOP-4	298	1 bar	626	265	2010,54(12).1724-50.	
NRPP-1	353	1 bar	1579	192	ACS Appl Mater	
NRPP-2	353	1 bar	1028	222	Interfaces.	
		1 0 441	1020		2018;10(18):16049-58.	
MALP-1	350	1 bar	1179	209		
MALP-2	350	1 bar	1126	219	Ind. Eng. Chem. Res.	
MALP-3	350	1 bar	1141	187	2019;58(37):17369-79.	
MALP-4	350	1 bar	1093	203		
PAOP-1	353	1 bar	306	28	Journal of Applied	
PAOP-2	353	1 bar	533	79	Polymer Science 2021	
PAOP-3	353	1 bar	367	49	138(12): 50054.	
PAOP-4	353	1 bar	210	101		
TALPOP	353	1 bar	401	314	Scientific Reports.	
THE OF	555	1 oui	101	511	2020;10(1):15943.	
NRAPOP-1	350	1 bar	544	281	Journal of Materials	
$NR \Delta P \cap P_{-}2$	350	1 har	474	271	Science.	
111111101-2	550	i oui	727	271	2020;55(24):10896-909.	
PAN-B	348	1 bar	1254	317	Polymer 2020:122401	
PAN-T	348	1 bar	1273	311	1 orymer. 2020.122401.	
PAN1	348	1 bar	616	133		
PAN2	348	1 bar	542	245	I Annl Polym Sci	
PAN3	348	1 bar	194	281	2018-135(15)-46106	
PAN4	348	1 bar	522	237	2010,100(10).10100.	
PAN5	348	1 bar	439	189		
PAN-FPP5	348	1 bar	788	222	Ind. Eng. Chem. Res.	
PAN-TPDA	348	1 bar	752	145	2020, 59, 7, 3269–3278	
Ag@Zeolite	368	1 bar	-	27.5	J. Am. Chem.Soc. 132	
-6	200			_ /	(2010) 8897-8899.	
ZIF-8	350	1 bar	1630	125	J. Am. Chem.Soc. 133	
	220		1000		(2011) 12398-12401.	
NiMoS	333	1 bar	490	225	Chem. Mater. 27 (2015)	
					2619-2626.	
PAF-1	298	40 Pa	5600	186	J. Mater. Chem. A 2	
	_, ,				(2014) 7179-7187.	
PAF-24	348	40 Pa	136	276	Angew. Chem. Int. Ed. 54 (2015) 12733-12737.	
	210		100	270		

HCMP-1	358	1 har	/30	159	Macromolecules 49)
nemi -i	558	1 Udi	430	139	(2016) 6322-6333.	
HCMP-2	358	1 bar	153	281	Macromolecules 49 (2016) 6322-6333.)
					ACS Appl. Mater.	
MOF-808	353	1 bar	2126	218	Interfaces 12 (2020)	
WO1-000	555	1 our	2120	210	20429-20439	
					ACS Appl. Mater.	
NU-1000	353	1 bar	1930	145	Interfaces 12 (2020)	
					20429-20439.	
					Microporous	
BTT-TAPT-COF	348	1 bar	545	276	Mesoporous Mater. 296	
					(2020) 109990	
					J Hazard. Mater. 387	
CMP-LS7	353	l bar	507	277	(2020) 121949.	
			2028		J Hazard. Mater. 387	
CMP-LS8	353	l bar		529	(2020) 121949.	
	250	1.1	50.04	110	Polym. Chem. 11 (2020))
TBTT-CMP@1	350	l bar	58.84	442	2786-2790	
TBTT-CMP@2	350	1 1	64.23	257	Polym. Chem. 11 (2020))
		1 Dar		357	2786-2790	
TRTT CMD@3	350	1 bor	62.08	357	Polym. Chem. 11 (2020)	I
TBTT-CMP@3	330	1 Uai	02.70	332	2786-2790	
CTF-Cl-1	350	1 bar	516	269	Chem. Asian. J, 2019,	
011-01-1		i bai			14(19): 3259-3263.	
CTF-Cl-2	350	1 bar	599	289	Chem. Asian. J, 2019,	
	550				14(19): 3259-3263.	
CTF-Cl-3	350	1 bar	590	285	Chem. Asian. J, 2019,	
-					14(19): 3259-3263.	
CTF-Cl-4	350	1 bar	889	312	Chem. Asian. J, 2019,	
					14(19): 3259-3263.	
S-HCP	348	1 bar	612.83	360	Sep. Purif. Technol. 228	
					(2019) 115739	
					ACS Appl. Mater.	
CSU-CPOPs-1	348	1 bar	1032.4	494	Interfaces 11 (2019)	
					27335-27342	
CSU-CPOPs-2	• 10				ACS Appl. Mater.	
	348	l bar	532.8	424	Interfaces 11 (2019)	
					27335-27342	
	2.10	1.1	2(0.0	247	ACS Appl. Mater.	
CSU-CPOPS-3	348	l bar	268.8	347	Interfaces 11 (2019)	
					2/335-2/342	
TPB-DMTP COF	350	1 bar	1927	626	Adv. Mater. 2018, 30	
					(29), 1801991	

TTA TTD COF	250	1 har	1722	405	Adv. Mater. 2018, 30
TIA-TID COF	330	1 Dar	1755	495	(29), 1801991
					Microporous
P-DPDA	348	1 bar	24.2	408	Mesoporous Mater.
					2021;310:110596
					Microporous
P-TPB	348	1 bar	646.6	335	Mesoporous Mater.
					2021;310:110596
					Microporous
P-PC	348	1 bar	540.4	268	Mesoporous Mater.
					2021;310:110596

Figure S11. The UV-vis spectra of iodine released from I₂@TPOA-F (2 mg) in 10 mL of ethanol (a) and I₂@ TPOA-OH (2 mg) in 10 mL of ethanol (b)

Figure S12. The UV-vis spectra of iodine released from I₂@TPOA-F (a) and I₂@ TPOA-OH (b)

Figure S13. Recycle iodine capture experiments for these two TPOAs

Figure S14. FT-IR spectra of TPOA-F, TPOA-OH, I2@TPOA-F and I2@TPOA-OH.

Figure S15. Their Raman spectra for the iodine-loaded TPOAs ($I_2@$ TPOAs).

Figure S16. The removal of evolution of UV-Vis spectra of iodine adsorption in cyclohexane.

Figure S17. The photographs of iodine solution adsorption process of TPOA-F (a) and TPOA-OH (b).

Figure S18. Adsorption kinetic of iodine on TPOAs.