Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Hollow and Mesoporous M@Aluminosilicate (M=Rh, Pd and Pt) Bifunctional

Catalytic Nanoreactors for the Hydrodeoxygenation of Lignin-Derived Phenols

Hongbo Yu,*, ^{a, §} Fei Zhang,^{a, §} Shuibo Wang,^c Yang Cong,^{a, b} Shiwei Wang,*, ^b and Lin

Zhu*^{, a}

 ^aSchool of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, P. R. China, hongboyu@nbut.edu.cn; linzhu@nbut.edu.cn
^bZhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China, wangshiwei@zitju.cn
^cNingbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
[§]Hongbo Yu and Fei Zhang contributed equally to this work.

Figure S1. Size distributions showing: (a) Rh@Al_{2.0}-mSiO₂, (b) Pt@Al_{2.0}-mSiO₂, and (c) Pd@Al_{2.0}-mSiO₂.

Figure S2. XRD patterns of Rh@Al_{0.5}-m-SiO₂, Rh@Al_{1.0}-m-SiO₂, Rh@Al_{1.5}-m-SiO₂, Rh@Al_{1.5}-m-SiO₂, Rh@Al_{2.0}-m-SiO₂, and Rh@Al_{2.5}-m-SiO₂.

Figure S3. XRD profiles of Pt@Al₂-mSiO₂ and Pd@Al-mSiO₂ samples.

Figure S4. HAADF-STEM images of Pd@Al-mSiO₂ samples: (a) area selected for phase mapping; (b) combined phase mapping of Pd, Si, O and Al; (c) Pd phase mapping; (d) Si phase mapping; (e) O phase mapping; and (f) Al phase mapping.

Figure S5. HAADF-STEM images of Pd@Al-mSiO₂ samples: (a) area selected for phase mapping; (b) Pt phase mapping; (c) Al phase mapping; (d) Si phase mapping; and (e) O phase mapping.

Entry	Catalyst	Rh (wt%)ª	S _{BET}	D _{poresize}
			(m ² ·g ⁻¹)	(nm)
1	Rh@Al _{0.5} -mSiO ₂	0.19	664	3.5
2	Rh@Al _{1.0} -mSiO ₂	0.20	493	4.0
3	Rh@Al _{1.5} -mSiO ₂	0.19	356	4.0
4	Rh@Al _{2.0} -mSiO ₂	0.20	328	4.1
5	Rh@Al _{2.5} -mSiO ₂	0.21	314	4.0

^a Obtained by ICP-MS method.

Figure S6. a) N_2 adsorption-desorption isotherms of $Pt@Al_{2.0}$ -mSiO₂ and $Pd@Al_{2.0}$ -mSiO₂ and b) their corresponding pore size distributions.

Sample	Temperature (°C)	BAª (umol/g)	LAª (umol/g)	Total acid (umol/g)
Rh@Al _{0.5} -MHSiO ₂	200	0.007	0.260	0.267
Rh@Al _{1.0} -MHSiO ₂	200	0.039	0.200	0.239
Rh@Al _{1.5} -MHSiO ₂	200	0.097	0.310	0.407
Rh@Al ₂ -MHSiO ₂	200	0.280	0.390	0.670
Rh@Al _{2.5} -MHSiO ₂	200	0.290	0.360	0.650

Table S2. Acid distributions of the catalysts.

^aBA and LA are the concentration of Brønsted and Lewis acid sites determined by Py-FTIR.

Figure S7. NH₃-TPD profiles of Pd@Al_{2.0}-mSiO₂ and Pt@Al_{2.0}-mSiO₂ catalysts.

Figure S8. Size distribution of Rh@Al_{2.0}-mSiO₂ after five recycling experiments.

Figure S9. XRD pattern of $Rh@Al_{0.25}$ -mSiO₂ after five cycle experiments.