Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary data

for

Fenton-like degradation of bisphenol A by Fe₃O₄ rhombic

dodecahedrons

Jinglin Zhu^{1,2}* Meng Zhu^{1,2}, Juanjuan Peng^{1,2}

^{1.} School of Earth and Environment, Anhui University of Science and Technology, Huainan

232001, China

^{2.} State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal

Mines (Anhui University of Science and Technology), Huainan 232001, China

*To whom correspondence should be addressed.

E-mail: jlzhu@aust.edu.cn

Number of pages: 11

Number of tables: 3

Number of figures: 5

List of Supplementary data

Table S1 Basic properties of Fe_3O_4 -R before and after reaction in the cycle experiments.

Table S2 Comparison of Fe₃O₄-R with other Fe₃O₄ catalysts in references.

Table S3 LC/MS intermediates obtained during Fenton-like degradation of BPA using Fe₃O₄-R.

Fig. S1 (a) FTIR spectrum and (b) XPS spectrum of Fe₃O₄-R.

Fig. S2 Nitrogen adsorption-desorption isotherm and its pore size distribution (inset) of Fe_3O_4 -C.

Fig. S3 The concentration of Fe leaching and Fe(II) in the Fe₃O₄-R/H₂O₂ system.

Fig. S4 Estimated contribution of homogeneous and heterogeneous systems to the BPA degradation in the Fe_3O_4 -R/H₂O₂ system.

Fig. S5 Reuse performance of Fe₃O₄-R for Fenton-like degradation of BPA.

Samples	BET surface	Pore Volume	Pore size	Surface Fe(II)/Fe(III)
	area (m ² g ⁻¹)	(cm ³ g ⁻¹)	(nm)	ratio
Fresh Fe ₃ O ₄ -R	19.99	0.041	2.12	63.51%
Used Fe ₃ O ₄ -R	18.56	0.035	1.65	50.53%

Table S1 Basic properties of Fe_3O_4 -R before and after reaction in the cycle experiments.

Catalysts	Catalyst dosage (g L ⁻¹)	H ₂ O ₂ dosage (mM)	Pollutant concentration (mM)	Initial pH	Removal efficiency	Ref.
Superparamagnetic Fe ₃ O ₄	5	1.2	phenol (1)	6.0-7.0	60% (6 h)	1
Fe ₃ O ₄ nanoparticles	1.0	12	2,4-dichlorophenol (0.61)	3.0	51% (180 min)	2
Nano-Fe ₃ O ₄	1.0	0.05	4-chlorocatechol (10 ⁻³)	6.5	100% (3 h)	3
Nano-sized Fe ₃ O ₄	0.25	40	phenol (6.38)	4.0	98% (90 min)	4
Nanosized Fe ₃ O ₄	0.5	UV-Fenton (11.8)	catechol (0.9)	3.0	84% (240 min)	5
magnetite	0.2	UVA-Fenton (1)	phenol (0.1)	3.0	100% (4 h)	6
Fe ₃ O ₄ magnetic nanoparticles	0.585	Sono-Fenton (160)	BPA (0.09)	3.0	100% (500 min)	7
Fe ₃ O ₄ -R	0.1	0.2	BPA (0.1)	5.0	100% (30 min)	This work

Table S2 Comparison of Fe_3O_4 -R with other Fe_3O_4 catalysts in references.

Product	Experimental mass [M-H] ⁺ m/z	RT	Molecular Formula	Tentative structure
BPA	227.1045	2.64	$C_{15}H_{16}O_2$	но-С-С-С-С-С-ОН СН ₃ С-ОН
TP243	243.0993	2.01	$C_{15}H_{16}O_3$	но-С-С-С-С-ОН С-С-С-С-ОН
TP241	241.0838	1.70	$C_{15}H_{14}O_3$	HO-C-C-CH3 O CH3 O
TP275	275.0477	1.36	$C_{15}H_{16}O_5$	но-СН ₃ СООН с-СССООН сН ₃ СООН
TP135	135.0424	1.42	$C_8H_8O_2$	HO-C-C-CH3
TP167	167.0683	1.35	$C_9H_{12}O_3$	но СН ₃ но СН ₃ с ОН

Table S3 LC/MS intermediates obtained during Fenton-like degradation of BPA using Fe_3O_4 -R.

Fig. S1 (a) FTIR spectrum and (b) XPS spectrum of Fe_3O_4 -R.

Fig. S2 Nitrogen adsorption-desorption isotherm and its pore size distribution (inset) of Fe_3O_4 -C.

Fig. S3 The concentration of Fe leaching and Fe(II) in the Fe₃O₄-R/H₂O₂ system. Conditions: $[catalyst]_0 = 0.1 \text{ g L}^{-1}$, $[H_2O_2]_0 = 5 \text{ mM}$, $[BPA]_0 = 0.1 \text{ mM}$, and initial pH = 5.0.

Fig. S4 Estimated contribution of homogeneous and heterogeneous systems to the BPA degradation in the Fe₃O₄-R/H₂O₂ system. Conditions: $[catalyst]_0 = 0.1 \text{ g L}^{-1}$, $[H_2O_2]_0 = 5 \text{ mM}$, $[BPA]_0 = 0.1 \text{ mM}$, and initial pH = 5.0.

Fig. S5 Reuse performance of Fe_3O_4 -R for Fenton-like degradation of BPA. Conditions: $[catalyst]_0 = 0.1 \text{ g } \text{L}^{-1}$, $[H_2O_2]_0 = 5 \text{ mM}$, $[BPA]_0 = 0.1 \text{ mM}$, and initial pH = 5.0.

Reference

- S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai and G. Jiang, Superparamagnetic Fe₃O₄ nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds, *J. Hazard. Mater.*, 2009, 167, 560-566.
- [2] L. Xu and J. Wang, Fenton-like degradation of 2,4-dichlorophenol using Fe₃O₄ magnetic nanoparticles, *Appl. Catal. B: Environ.*, 2012, **123-124**, 117-126.
- [3] J. He, X. Yang, B. Men, Z. Bi, Y. Pu and D. Wang, Heterogeneous Fenton oxidation of catechol and 4-chlorocatechol catalyzed by nano-Fe₃O₄: Role of the interface, *Chem. Eng. J.*, 2014, 258, 433-441.
- [4] L. Hou, Q. Zhang, F. Jérôme, D. Duprez, H. Zhang and S. Royer, Shapecontrolled nanostructured magnetite-type materials as highly efficient Fenton catalysts, *Appl. Catal. B: Environ.*, 2014, 144, 739-749.
- [5] W. Li, Y. Wang and A. Irini, Effect of pH and H₂O₂ dosage on catechol oxidation in nano-Fe₃O₄ catalyzing UV–Fenton and identification of reactive oxygen species, *Chem. Eng. J.*, 2014, 244, 1-8.
- [6] M. Minella, G. Marchetti, E. De Laurentiis, M. Malandrino, V. Maurino, C. Minero, D. Vione and K. Hanna, Photo-Fenton oxidation of phenol with magnetite as iron source, *Appl. Catal. B: Environ.*, 2014, **154-155**, 102-109.
- [7] R. Huang, Z. Fang, X. Yan and W. Cheng, Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe₃O₄ magnetic nanoparticles under neutral condition, *Chem. Eng. J.*, 2012, **197**, 242-249.