Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

A novel series of tetrahydrothieno[2,3-c]pyridin-2-yl derivatives: Fluorescence Spectroscopy and BSA Binding, ADMET properties, Molecular Docking, and DFT studies

Goncagül Serdaroğlu^{1,*}, Nesimi Uludag², Elvan Üstün³, Naki Colak⁴

 ¹Sivas Cumhuriyet University, Faculty of Education, Math. and Sci. Edu., 58140, Sivas, Turkey; e-mail:goncagul.serdaroglu@gmail.com
²Department of Chemistry, Faculty of Arts and Sciences, Namık Kemal University, 59030, Tekirdağ, Turkey; e-mail: <u>nuludag@nku.edu.tr</u>
³Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey, e-mail: elvanustun@odu.edu.tr
⁴Department of Chemistry, Hitit University, Department of Chemistry, Corum 19030, Turkey, e-mail: nakicolak@hitit.edu.tr

Table of Contents

Fig. S1a. The recorded <i>FT-IR</i> spectrum of the compound C15
Fig. S1b. The recorded ¹³ C NMR spectrum of the compound C15
Fig. S1c. The recorded ¹ H NMR spectrum of the compound C16
Fig. S2a. The recorded <i>FT-IR</i> spectrum of the compound C2
Fig. S2b. The recorded ${}^{13}C$ NMR spectrum of the compound C27
Fig. S2c. The recorded ¹ <i>H</i> NMR spectrum of the compound C27
Fig. S3a. The recorded <i>FT-IR</i> spectrum of the compound C3
Fig. S3b. The recorded ¹³ C NMR spectrum of the compound C3
Fig. S3c. The recorded ¹ H NMR spectrum of the compound C39
Fig. S4a. The recorded <i>FT-IR</i> spectrum of the compound N19
Fig. S4b. The recorded ${}^{13}CNMR$ spectrum of the compound N110
Fig. S4c. The recorded ¹ H NMR spectrum of the compound N110
Fig. S5a. The recorded FT-IR spectrum of the compound N2
Fig. S5b. The recorded ¹³ C NMR spectrum of the compound N211
Fig. S5c. The recorded ${}^{1}HNMR$ spectrum of the compound N212
Fig. S6a. The recorded FT-IR spectrum of the compound N3
Fig. S6b. The recorded ¹³ C NMR spectrum of the compound N313
Fig. S6c. The recorded ¹ <i>H</i> NMR spectrum of the compound N313
Table S1. The observed and calculated ${}^{13}C$ NMR chemical shifts of compounds 1-6 relative to TMS, at B3LYP/6-
311G** level of the theory in DMSO14
Table S2. The observed and calculated ${}^{1}H$ NMR chemical shifts of compounds 1-6 relative to TMS, at B3LYP/6-
311G** level of the theory in DMSO14
Table S3. The theoretical UV-Vis absorption characteristics of the studied compounds, in methanol

Fig. S7. (a) The fluorescence spectra of BSA with presence of C1, (b) Stern-Volmer plot of C1 to BSA at 293 K, (c)
The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA16
Fig. S8. (a) The fluorescence spectra of BSA with presence of C1, (b) Stern-Volmer plot of C1 to BSA at 298 K, (c)
The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA17
Fig. S9. (a) The fluorescence spectra of BSA with presence of C1, (b) Stern-Volmer plot of C1 to BSA at 308 K, (c)
The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA17
Fig. S10. (a) The fluorescence spectra of BSA with presence of C1 and Ca ²⁺ (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of C1 to BSA at 298 K with presence Ca^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA
with presence $Ca^{2+}(1.00x10^{-5} \text{ mol } L^{-1})$
Fig. S11. (a) The fluorescence spectra of BSA with presence of C1 and Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of C1 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA
with presence Mg ²⁺ (1.00x10 ⁻⁵ mol L ⁻¹)
Fig. S12. (a) The fluorescence spectra of BSA with presence of C1 and Zn^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of C1 to BSA at 298 K with presence $\mathbb{Z}n^{2+}$, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA
with presence \mathbf{Zn}^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)
Fig. S13. (a) The fluorescence spectra of BSA with presence of C2, (b) Stern-Volmer plot of C2 to BSA at 293 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[C2]$ for quenching of C2 to BSA
Fig. S14. (a) The fluorescence spectra of BSA with presence of C2, (b) Stern-Volmer plot of C2 to BSA at 308 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[C2]$ for quenching of C2 to BSA19
Fig. S15. (a) The fluorescence spectra of BSA with presence of C3, (b) Stern-Volmer plot of C3 to BSA at 293 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA
Fig. S16. (a) The fluorescence spectra of BSA with presence of C3, (b) Stern-Volmer plot of C3 to BSA at 298 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA19
Fig. S17. (a) The fluorescence spectra of BSA with presence of C3, (b) Stern-Volmer plot of C3 to BSA at 308 K (c)
The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA
Fig. S18. (a) The fluorescence spectra of BSA with presence of C3 and Ca^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of C3 to BSA at 298 K with presence Ca ²⁺ , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA
with presence Ca^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)
Fig. S19. (a) The fluorescence spectra of BSA with presence of C3 and Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of C3 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA
with presence Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)20
Fig. S20. (a) The fluorescence spectra of BSA with presence of C3 and Zn^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of C3 to BSA at 298 K with presence $\mathbb{Z}n^{2+}$, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA
with presence Zn^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)
Fig. S21. (a) The fluorescence spectra of BSA with presence of N1, (b) Stern-Volmer plot of N1 to BSA at 293 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA21
Fig. S22. (a) The fluorescence spectra of BSA with presence of N1, (b) Stern-Volmer plot of N1 to BSA at 298 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA
Fig. S23. (a) The fluorescence spectra of BSA with presence of N1, (b) Stern-Volmer plot of N1 to BSA at 308 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA

Fig. S24. (a) The fluorescence spectra of BSA with presence of N1 and Ca ²⁺ (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N1 to BSA at 298 K with presence Ca^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA
with presence Ca ²⁺ (1.00x10 ⁻⁵ mol L ⁻¹)
Fig. S25. (a) The fluorescence spectra of BSA with presence of N1 and Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N1 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA
with presence Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)22
Fig. S26. (a) The fluorescence spectra of BSA with presence of N1 and Zn^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N1 to BSA at 298 K with presence $\mathbb{Z}n^{2+}$, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA
with presence Zn^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)23
Fig. S27. (a) The fluorescence spectra of BSA with presence of N2, (b) Stern-Volmer plot of N2 to BSA at 293 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA23
Fig. S28. (a) The fluorescence spectra of BSA with presence of N2, (b) Stern-Volmer plot of N2 to BSA at 298 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA23
Fig. S29. (a) The fluorescence spectra of BSA with presence of N2, (b) Stern-Volmer plot of N2 to BSA at 308 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA24
Fig. S30. (a) The fluorescence spectra of BSA with presence of N2 and Ca^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N2 to BSA at 298 K with presence Ca^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA
with presence $Ca^{2+}(1.00x10^{-5} \text{ mol } L^{-1})$ 24
Fig. S31. (a) The fluorescence spectra of BSA with presence of N2 and Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N2 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA
with presence Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)24
Fig. S32. (a) The fluorescence spectra of BSA with presence of N2 and Zn^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N2 to BSA at 298 K with presence Zn^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA
with presence \mathbf{Zn}^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)25
Fig. S33. (a) The fluorescence spectra of BSA with presence of N3, (b) Stern-Volmer plot of N3 to BSA at 293 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA25
Fig. S34. (a) The fluorescence spectra of BSA with presence of N3, (b) Stern-Volmer plot of N3 to BSA at 298 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA25
Fig. S35. (a) The fluorescence spectra of BSA with presence of N3, (b) Stern-Volmer plot of N3 to BSA at 308 K,
(c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA26
Fig. S36. (a) The fluorescence spectra of BSA with presence of N3 and Ca^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N3 to BSA at 298 K with presence Ca^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA
with presence Ca ²⁺ (1.00x10 ⁻⁵ mol L ⁻¹)
Fig. S37. (a) The fluorescence spectra of BSA with presence of N3 and Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N3 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA
with presence Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)26
Fig. S38. (a) The fluorescence spectra of BSA with presence of N3 and Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹), (b) Stern-Volmer
plot of N3 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA
with presence Mg^{2+} (1.00x10 ⁻⁵ mol L ⁻¹)
Table S4. NBO analysis results of the compounds, at B3LYP/6-311G(d,p) in gas
Table S5. The chemical reactivity values of the studied compounds

Fig. S39.	Interaction	residue in	Human	Leukemia	Inhibitory	Factor	(middle),	and	interaction	type	of the
molecules											30
Fig. S40. Ir	nteraction res	idue in DNA	A dodecar	ner and inte	raction type	e of the n	nolecules				31

Fig. S1a. The recorded FT-IR spectrum of the compound C1

Fig. S1b. The recorded ${}^{13}CNMR$ spectrum of the compound C1

Fig. S1c. The recorded ${}^{1}HNMR$ spectrum of the compound C1

Fig. S2a. The recorded FT-IR spectrum of the compound C2

Fig. S2c. The recorded ${}^{1}HNMR$ spectrum of the compound C2

Fig. S3a. The recorded FT-IR spectrum of the compound C3

Fig. S3b. The recorded ${}^{13}CNMR$ spectrum of the compound C3

Fig. S3c. The recorded ¹H NMR spectrum of the compound C3

Fig. S4a. The recorded FT-IR spectrum of the compound N1

Fig. S4c. The recorded ${}^{1}HNMR$ spectrum of the compound N1

Fig. S5a. The recorded FT-IR spectrum of the compound N2

Fig. S5b. The recorded ${}^{13}CNMR$ spectrum of the compound N2

Fig. S5c. The recorded ${}^{1}HNMR$ spectrum of the compound N2

Fig. S6a. The recorded FT-IR spectrum of the compound N3

Fig. S6b. The recorded ^{13}C NMR spectrum of the compound N3

Fig. S6c. The recorded ${}^{1}HNMR$ spectrum of the compound N3

	<i>C1</i>	C	2	C.	3	N	1	N	2	N	3
Atom Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.	Exp.	Calc.
1-C 56.	9 60.2	56.9	60.1	56.9	60.1	56.0	60.2	56.9	60.2	56.6	60.2
2-C 33.	8 41.7	33.8	41.7	33.8	41.8	34.2	41.8	33.8	41.7	34.2	41.8
3-C 55.	9 57.4	55.8	57.4	55.9	57.4	55.9	57.4	55.9	57.4	55.8	57.4
6-C 93.	4 97.4	94.5	97.2	94.6	97.0	93.1	97.6	94.8	97.7	94.8	98.0
7-C 147.	9 161.5	148.3	161.7	148.4	161.8	145.8	161.2	147.5	161.5	150.0	161.3
9-C 134.	2 148.9	132.6	149.0	130.8	148.7	133.0	149.3	134.9	149.5	130.6	149.7
10-C 130.	2 138.5	130.5	138.5	130.3	138.5	127.3	138.6	127.5	138.7	130.0	138.9
13-C 164.	8 169.6	164.2	167.9	164.5	168.1	164.3	170.0	163.6	167.3	165.7	167.6
15-C 131.	9 140.6	130.5	140.5	128.7	137.2	129.8	140.0	130.5	140.4	130.5	145.5
16-C 127.	1 135.9	127.8	130.3	127.2	133.2	124.2	135.2	130.2	139.3	127.2	132.9
17-C 132.	5 147.6	128.0	136.5	129.6	138.4	134.5	156.3	123.2	131.8	127.5	138.0
18-C 130.	5 134.6	128.8	137.4	127.3	135.9	132.3	143.4	127.2	137.2	123.5	131.2
20-C 129.	6 138.3	133.1	150.4	128.6	136.7	123.6	133.1	135.3	157.1	123.6	131.3
21-C 130.	7 140.0	132.6	140.6	131.1	154.7	127.2	138.6	123.6	134.7	136.4	158.5
23-C 118.	5 119.9	118.5	120.1	118.5	120.1	118.5	119.8	113.5	120.0	118.5	119.9
24-С											
25-С											
27-C 29.	5 34.5	25.9	34.5	25.9	34.5	25.9	34.5	29.5	34.5	29.5	34.5
28-С											
29-С											
31-C 25.	8 29.5	25.8	29.5	25.8	29.4	25.8	29.5	25.9	29.5	25.8	29.4
32-С											
33-С											
35-C 25.	9 35.2	29.5	35.2	29.5	35.2	29.5	35.2	25.8	25.2	25.9	35.2
36-С											
37-С											
39-C 29.9	37.2	30.0	37.2	30.0	37.1	29.9	37.1	30.0	37.2	30.0	37.2
40-С											
41-C											

Table S1. The observed and calculated ${}^{13}C$ NMR chemical shifts of compounds **1-6** relative to TMS, at B3LYP/6-311G** level of the theory in DMSO

Table S2. The observed and calculated ${}^{1}H$ NMR chemical shifts of compounds 1-6 relative to TMS, at B3LYP/6-311G** level of the theory in DMSO

	(C1	(C2	(73	Λ	/1	Λ	/2	Λ	/3
Atom	Exp.	Calc.										
4-H	2.86	2.34	2.88	2.34	2.88	2.34	2.87	2.35	2.89	2.36	2.90	2.36
5-H	3.46	2.67	3.45	2.67	3.45	2.67	3.47	2.69	3.47	2.69	3.57	2.70
12-H	9.86	8.27	9.98	8.81	9.88	8.77	8.31	8.35	8.79	8.89	9.92	8.88
19-H	7.58	7.77	7.76	7.84	7.67	7.89	7.77	7.81	8.34	8.33	7.49	8.11
22-Н	7.46	7.69	7.65	7.78	7.57	7.70	8.31	8.15	7.92	8.04	8.32	8.67
23-Н							9.84	8.44	8.62	8.75		
24-H							7.98	8.01				
26-Н	1.48	0.86	1.49	0.86	1.49	0.86					1.07	0.88
27-Н									1.50	0.88		
28-Н	1.67	1.31	1.82	1.31	1.67	1.31	1.50	0.88			1.53	1.32
29-Н	1.67	1.41	1.67	1.41	1.67	1.41			1.68	1.32	1.53	1.42
30-H	1.52	0.97	1.49	0.96	1.49	0.96	1.68	1.32	1.68	1.42	1.07	0.98
31-Н							1.68	1.42	1.55	0.97		
32-Н	1.48	0.94	1.49	0.94	1.49	0.93	1.50	0.97				0.94
33-Н	1.48	0.96	1.54	0.96	1.53	0.95			1.50	0.95	1.36	0.96
34-H	1.82	1.47	1.67	1.47	1.83	1.46	1.50	0.96	1.50	0.97	1.72	1.46
35-Н							1.54	0.98	1.83	1.48		
36-H	1.67	1.33	1.67	1.32	1.67	1.32	1.84	1.50			1.53	1.33
37-Н	1.52	1.29	1.54	1.28	1.53	1.28			1.68	1.34	1.36	1.29
38-H	2.63	1.80	2.64	1.79	2.63	1.78	1.68	1.32	1.55	1.30	2.60	1.80

39-Н							1.54	1.29	2.65	1.81		
40-H	1.52	1.10	1.54	1.09	1.53	1.09	2.64	1.81			1.36	1.11
41-H	1.82	1.55	1.82	1.54	1.82	1.54			1.55	1.11	1.72	1.56
42-H	1.82	1.46	1.82	1.46	1.82	1.45	1.54	1.11	1.83	1.56	1.72	1.47
43-H	7.64	7.80	7.92	8.27	8.0	8.36	1.84	1.55	1.83	1.47	8.18	8.56
44-H	7.51	7.71	7.74	7.79	7.95	7.74	1.84	1.46	9.90	9.23	8.34	8.68

Table S3. The theoretical UV-Vis absorption characteristics of the studied compounds, in methanol.

Exp. (λnm)	Transitions	MO%	∆E (eV)	λ (nm)	f
	<i>C1</i>				
300	H→L	(98%)	3.7921	327	0.3830
	H-1→L	(97%)	4.0171	309	0.0010
	H-3→L	(7.3%)			
	H-2→L	(11.2%)	4.6074	269	0.0404
	$H \rightarrow L+1$	(77.8%)			
	H-3→L	(17.5%)	1 6136	267	0.0010
	$H \rightarrow L+2$	(75.4%)	4.0450	207	0.0017
	H-5→L	(18%)			
	H-4→L	(16.2%)			
257	H-3→L	(41%)	4.7091	263	0.0202
	$H \rightarrow L+1$	(6.4%)			
	$H\rightarrow L+2$	(13%)			
	H-5→L	(20.4%)			
	H-4→L	(37.9%)	4 7563	261	0.0126
	H-3→L	(21.7%)	4.7505	201	0.0120
	$H \rightarrow L+2$	(9.2%)			
	<i>C2</i>				
311	H→L	(99%)	3.5756	347	0.4155
	H-1→L	(98%)	3.8563	322	0.0011
	H-3→L	(25.6%)			
	H-2→L	(9.3%)	4.5125	275	0.0291
	$H \rightarrow L+1$	(57%)			
	H-5→L	(7.6%)			
	H-4→L	(10%)			
	H-3→L	(17.5%)	4.5551	272	0.0177
	H-2→L	(45.6%)			
	$H\rightarrow L+2$	(11.3%)			
	H-5→L	(44%)			
	H-4→L	(27.1%)	1 (00)	2(0	0.0229
	H-2→L	(17.2%)	4.6096	269	0.0228
	$H\rightarrow L+1$	(4.2%)			
	H-5→L	(7.5%)			
	H-3→L	(31.6%)	1 (70)	244	0.0725
	H-2→L	(20%)	4.6/06	266	0.0725
	H→L+1	(33.8%)			
206	<u>C3</u>	(000/)	2 5000	246	0.4577
306	$H \rightarrow L$	(99%)	3.5809	346	0.4577
	$\frac{H-1 \rightarrow L}{H-2}$	(98%)	3.8833	319	0.0012
238	H-2→L	(13.7%)	4.5126	275	0.0501
	$\frac{H \rightarrow L+1}{H - L + 1}$	(82.5%)			
	H-3→L	(35.3%)			
	H-4→L	(9.2%)	1 5716	271	0.0425
	H-3→L	(15.6%)	4.3/16	271	0.0425
	H-2→L	(16.2%)			
	$H \rightarrow L^{+}2$	(16.9%)			
	H-3→L	(21.4%)	4.6154	269	0.0321
	H-4→L	(14.4%)	-		

		H-2→L	(45.4%)			
		$H \rightarrow L+1$	(6.3%)			
		H→L+2	(9.2%)			
		H-5→L	(12%)			
		H-2→L	(16.6%)	4.7023	264	0.0475
		$H \rightarrow L+2$	(61.2%)			
		N1				
			(00.6%)	2 7380	153	0.0067
			(99.070)	3 1828	300	0.0007
			(07.8%)	3.1020	390	0.0002
		H6 J	(37.870)	5.8205	323	0.0200
		H-1→L	(40.970)	3 8/63	377	0.0266
		H_3→I	(11.2%)	5.0+05	522	0.0200
			(20, 1%)			
29	6	H→I +1	(20.170) (69.7%)	3.9794	312	0.3421
		H_3→I	(62.6%)			
		H→I +1	(26.2%)	4.0489	306	0.0315
		11 /1/1	(20.270)			
		N2				
		H→L	(99.7%)	2.8280	438	0.0025
		H-1→L	(99.8%)	3.2213	385	0.0003
		H→L+1	(98.8%)	3.5553	349	0.4221
		$H+1\rightarrow L+1$	(97.7%)	3.8054	326	0.0009
		H-6→L	(93.7%)	3.8679	321	0.0000
		H-2→L	(99.2%)	3.9000	318	0.0017
		N3				
		H→L	(99.7%)	2.6896	461	0.1714
		H-1→L	(99.4%)	3.0181	411	0.0013
		H-2→L	(98.7%)	3.7126	334	0.0184
		H-6→L	(89.8%)	2 7002	226	0.0007
		H-6→L+1	(5.6%)	3.7992	326	0.0007
20	4	H-3→L	(16.6%)	2 0050	210	0 2696
30	4	$H \rightarrow L+1$	(77.5%)	3.9939	510	0.3686
		H-5→L	(9%)			
		H-3→L	(66.1%)	4.0647	305	0.0069
		$H \rightarrow L+1$	(16.6%)			
	⁴⁰⁰]	0	2.0 -]
		BSA	-			0.0
	300 -	DOM (μM 1.8 -			-0.2 -
insity						▲ —■ <u></u>
ce Inte]		<u><u> </u></u>			6 ^{-0.4}
scent	200 -		1.4		1	9 -0.6 -
Floure						-
	100 -		1.2 -			-0.8 -
			↓ 50 μ)			-1.0 -
	0	BSA + 1	1.0 -			
	250	300 350 400	· · · · ·	10 20	30	40 -1.2
		10			F43	-5.4

(a) (c) Fig. S7. (a) The fluorescence spectra of BSA with presence of C1, (b) Stern-Volmer plot of C1 to BSA at 293 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L^{-1} , [C1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L^{-1})

(b)

Wavelength (nm)

[1]

-4.

-4.6

-4.8

log [1]

Fig. S8. (a) The fluorescence spectra of BSA with presence of C1, (b) Stern-Volmer plot of C1 to BSA at 298 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [C1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S9. (a) The fluorescence spectra of BSA with presence of C1, (b) Stern-Volmer plot of C1 to BSA at 308 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [C1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S10. (a) The fluorescence spectra of BSA with presence of C1 and Ca²⁺ (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of C1 to BSA at 298 K with presence Ca²⁺, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C1]$ for quenching of C1 to BSA with presence Ca²⁺ (1.00x10⁻⁵ mol L⁻¹) ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [C1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S11. (a) The fluorescence spectra of BSA with presence of C1 and Mg^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of C1 to BSA at 298 K with presence Mg^{2+} , (c) The plot of log(F₀ –F)/F vs. log[C1] for quenching of C1 to BSA with presence Mg^{2+} (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [C1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S12. (a) The fluorescence spectra of BSA with presence of C1 and Zn²⁺ (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of C1 to BSA at 298 K with presence Zn²⁺, (c) The plot of log($F_0 - F$)/F vs. log[C1] for quenching of C1 to BSA with presence Zn²⁺ (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [C1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S13. (a) The fluorescence spectra of BSA with presence of C2, (b) Stern-Volmer plot of C2 to BSA at 293 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C2]$ for quenching of C2 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L^{-1}, [C2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10^{-6} mol L^{-1})

Fig. S14. (a) The fluorescence spectra of BSA with presence of C2, (b) Stern-Volmer plot of C2 to BSA at 308 K , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C2]$ for quenching of C2 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [C2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S15. (a) The fluorescence spectra of BSA with presence of C3, (b) Stern-Volmer plot of C3 to BSA at 293 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L^{-1}, [C3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10^{-6} mol L^{-1})

Fig. S16. (a) The fluorescence spectra of BSA with presence of C3, (b) Stern-Volmer plot of C3 to BSA at 298 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L^{-1}, [C3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10^{-6} mol L^{-1})

Fig. S17. (a) The fluorescence spectra of BSA with presence of C3, (b) Stern-Volmer plot of C3 to BSA at 308 K (c) The plot of $\log(F_0 - F)/F$ vs. $\log[C3]$ for quenching of C3 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [C3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S18. (a) The fluorescence spectra of BSA with presence of C3 and Ca²⁺ (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of C3 to BSA at 298 K with presence Ca²⁺, (c) The plot of log($F_0 - F$)/F vs. log[C3] for quenching of C3 to BSA with presence Ca²⁺ (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [C3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S19. (a) The fluorescence spectra of BSA with presence of C3 and Mg^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of C3 to BSA at 298 K with presence Mg^{2+} , (c) The plot of log(F₀ –F)/F vs. log[C3] for quenching of C3 to BSA with presence Mg^{2+} (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [C3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S20. (a) The fluorescence spectra of BSA with presence of C3 and Zn^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of C3 to BSA at 298 K with presence Zn^{2+} , (c) The plot of log(F₀ –F)/F vs. log[C3] for quenching of C3 to BSA with presence Zn^{2+} (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [C3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S21. (a) The fluorescence spectra of BSA with presence of N1, (b) Stern-Volmer plot of N1 to BSA at 293 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S22. (a) The fluorescence spectra of BSA with presence of N1, (b) Stern-Volmer plot of N1 to BSA at 298 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S23. (a) The fluorescence spectra of BSA with presence of N1, (b) Stern-Volmer plot of N1 to BSA at 308 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S24. (a) The fluorescence spectra of BSA with presence of **N1** and **Ca²⁺** (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of **N1** to BSA at 298 K with presence **Ca²⁺**, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of **N1** to BSA with presence **Ca²⁺** (1.00x10⁻⁵ mol L⁻¹) ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S25. (a) The fluorescence spectra of BSA with presence of N1 and Mg^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N1 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N1]$ for quenching of N1 to BSA with presence Mg^{2+} (1.00x10⁻⁵ mol L⁻¹) ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S26. (a) The fluorescence spectra of BSA with presence of N1 and Zn^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N1 to BSA at 298 K with presence Zn^{2+} , (c) The plot of log(F₀ –F)/F vs. log[N1] for quenching of N1 to BSA with presence Zn^{2+} (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N1] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S27. (a) The fluorescence spectra of BSA with presence of N2, (b) Stern-Volmer plot of N2 to BSA at 293 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S28. (a) The fluorescence spectra of BSA with presence of N2, (b) Stern-Volmer plot of N2 to BSA at 298 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S29. (a) The fluorescence spectra of BSA with presence of N2, (b) Stern-Volmer plot of N2 to BSA at 308 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S30. (a) The fluorescence spectra of BSA with presence of N2 and Ca²⁺ (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N2 to BSA at 298 K with presence Ca²⁺, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA with presence Ca²⁺ (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S31. (a) The fluorescence spectra of BSA with presence of N2 and Mg^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N2 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N2]$ for quenching of N2 to BSA with presence Mg^{2+} (1.00x10⁻⁵ mol L⁻¹) ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S32. (a) The fluorescence spectra of BSA with presence of N2 and Zn^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N2 to BSA at 298 K with presence Zn^{2+} , (c) The plot of log(F₀ -F)/F vs. log[N2] for quenching of N2 to BSA with presence Zn^{2+} (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N2] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S33. (a) The fluorescence spectra of BSA with presence of N3, (b) Stern-Volmer plot of N3 to BSA at 293 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10^{-6} mol L⁻¹)

Fig. S34. (a) The fluorescence spectra of BSA with presence of N3, (b) Stern-Volmer plot of N3 to BSA at 298 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10^{-5} mol L⁻¹, [N3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S35. (a) The fluorescence spectra of BSA with presence of N3, (b) Stern-Volmer plot of N3 to BSA at 308 K, (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00×10^{-5} mol L⁻¹, [N3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 ($\times 10^{-6}$ mol L⁻¹)

Fig. S36. (a) The fluorescence spectra of BSA with presence of N3 and Ca²⁺ (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N3 to BSA at 298 K with presence Ca²⁺, (c) The plot of log(F₀ –F)/F vs. log[N3] for quenching of N3 to BSA with presence Ca²⁺ (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S37. (a) The fluorescence spectra of BSA with presence of N3 and Mg^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N3 to BSA at 298 K with presence Mg^{2+} , (c) The plot of $\log(F_0 - F)/F$ vs. $\log[N3]$ for quenching of N3 to BSA with presence Mg^{2+} (1.00x10⁻⁵ mol L⁻¹) ($\lambda ex = 280$ nm; $\lambda em = 338$ nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Fig. S38. (a) The fluorescence spectra of BSA with presence of N3 and Mg^{2+} (1.00x10⁻⁵ mol L⁻¹), (b) Stern-Volmer plot of N3 to BSA at 298 K with presence Mg^{2+} , (c) The plot of log(F₀ –F)/F vs. log[N3] for quenching of N3 to BSA with presence Mg^{2+} (1.00x10⁻⁵ mol L⁻¹) (λ ex = 280 nm; λ em = 338 nm. [BSA] = 1.00x10⁻⁵ mol L⁻¹, [N3] : 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 (x10⁻⁶ mol L⁻¹)

Table S4. NBO analysis results of the compounds, at B3LYP/6-311G(d,p) in gas

Donor(i)	ED _i /e	Acceptor (j)	ED _i /e	E ⁽²⁾ / kcalmol ⁻¹	E(j)-E(i)/ a.u	F(i.j)/ a.u
<u>C1</u>		1 V /			•/ 、/	
π C6-C7	1.80143	π* C9-C10	0.28558	15.87	0.33	0.066
		π* C23≡N24	0.10661	20.05	0.39	0.081
π C9-C10	1.86219	π* C6-C7	0.43992	13.31	0.28	0.059
π C15-C16	1.66677	π* C13-O14	0.26765	11.55	0.30	0.053
		π* C17-C20	0.36997	20.67	0.28	0.068
		π* C18-C21	0.32386	18.62	0.29	0.066
π C17-C20	1.66610	π* C15-C16	0.37080	19.76	0.29	0.069
		π* C18-C21	0.32386	19.40	0.30	0.068
π C18-C21	1.64335	π* C15-C16	0.37080	22.88	0.28	0.071
		π* C17-C20	0.36997	21.86	0.27	0.069
LP (2) S8	1.62092	π* C6-C7	0.43992	27.06	0.25	0.074
		π* C9-C10	0.28558	18.99	0.29	0.068
LP (1) N11	1.65380	π* C6-C7	0.43992	38.32	0.29	0.096
		π* C13-O14	0.26765	45.93	0.31	0.109
LP (2) O14	1.84577	σ* C13-C15	0.06910	19.99	0.66	0.105
LP (3) <i>Cl</i> -15	1.91757	π* C17-C20	0.36997	13.25	0.32	0.063
C2						
<u>C2</u>	-	1 CO C10				0.044
π C6-C7	1.79982	$\pi^* C9-C10$	0.28545	15.91	0.33	0.066
~~ ~ (^		π* C23≡N24	0.10739	20.17	0.39	0.081
π C9-C10	1.86116	$\pi^* C6-C/$	0.44127	13.36	0.27	0.059
π C15-C16	1.65486	π^* C13-O14	0.29572	18.20	0.28	0.065
		$\pi^* C17-C20$	0.35392	21.41	0.28	0.069
		π* C18-C21	0.31411	19.51	0.29	0.067
π C17-C20	1.66361	π^* C15-C16	0.37903	18.48	0.29	0.067
~		π^* C18-C21	0.31411	20.56	0.30	0.070
π C18-C21	1.64849	π^* C15-C16	0.37903	21.16	0.28	0.069
/->		π* C17-C20	0.35392	20.33	0.28	0.067
LP (2) S8	1.62061	π* C6-C7	0.44127	27.12	0.25	0.074
		π^* C9-C10	0.28545	18.97	0.29	0.068
LP (1) N11	1.65358	π* C6-C7	0.44127	38.42	0.29	0.096
		π* C13-O14	0.29572	52.05	0.29	0.112
LP (2) O14	1.85508	σ* C13-C15	0.06642	18.85	0.68	0.103
LP (3) <i>Cl</i> -15	1.92477	π* C17-C20	0.35392	12.46	0.33	0.062
<i>C</i> 3						
05						

π C6-C7	1.79977	π* C9-C10	0.28537	15.94	0.33	0.066
		π* C23≡N24	0.10768	20.22	0.39	0.081
π C9-C10	1.86182	π* C6-C7	0.44127	13.32	0.27	0.059
π C15-C16	1.65238	π* C13-O14	0.29873	19.00	0.28	0.066
		π* C17-C20	0.28693	20.09	0.29	0.070
		π* C18-C21	0.38431	20.37	0.27	0.067
π C17-C20	1.64859	π* C15-C16	0.38059	19.54	0.28	0.066
		π* C18-C21	0.38431	22.78	0.27	0.071
π C18-C21	1.66095	π* C15-C16	0.38059	20.08	0.30	0.070
		π* C17-C20	0.28693	17.84	0.30	0.067
LP (2) S8	1.62146	π* C6-C7	0.44127	27.10	0.25	0.074
		π* C9-C10	0.28537	18.94	0.29	0.068
LP (1) N11	1.65486	π* C6-C7	0.44127	38.55	0.29	0.096
		π* C13-O14	0.29873	52.07	0.29	0.112
LP (2) O14	1.85565	σ* C13-C15	0.06589	18.65	0.68	0.103
LP (3) <i>Cl</i> -15	1.91893	π* C18-C21	0.38431	13.25	0.33	0.063
N/1						
$\frac{NI}{\pi C6 C7}$	1 80346	$\pi * C0 C10$	0 28546	15 78	0.33	0.066
n CO-C7	1.80340	$\pi^* C_{25} = N_{26}$	0.28540	10.78	0.33	0.000
$\pi C_{P}C_{10}$	1 86201	$\pi^* C_{23} = 1 \times 20$	0.10348	13.09	0.39	0.081
$\pi C_{15} C_{16}$	1.65060	$\pi^* C13 O14$	0.43742	13.39	0.28	0.033
n C13-C10	1.03909	$\pi^* C13-014$ $\pi^* C17 C20$	0.20233	4.03	0.32	0.033
		$\pi^* C17-C20$ $\pi^* C18 C21$	0.33093	20.47	0.28	0.008
$\pi C17 C20$	1 64003	$\pi C13-C21$ $\pi C15-C16$	0.30331	20.12	0.29	0.009
n C17-C20	1.04995	$\pi^* C13 - C10$	0.33273	21.57	0.29	0.071
		$\pi \times 10-0.21$ $\pi \times 10.5-0.47$	0.50551	21.44	0.30	0.005
$\pi C18 C21$	1 63/67	$\pi^* C15 C16$	0.33275	21.44	0.15	0.055
n C10-C21	1.05407	$\pi^* C13-C10$	0.35603	20.23	0.28	0.008
LP (2) S8	1 61968	$\pi^* C6-C7$	0.43742	25.17	0.20	0.072
L1(2)50	1.01700	$\pi^* C_{9-C_{10}}$	0.43742	19.03	0.29	0.074
I P (1) N11	1 65033	π*C6-C7	0.43742	37.45	0.29	0.000
	1.05055	$\pi^* C13-O14$	0.45742	46 46	0.32	0.075
IP(2)014	1 83928	σ* C13-C15	0.07254	20.82	0.52	0.106
IP(2) O14 IP(2) O46	1 88924	σ* C17-N45	0.11057	12 54	0.05	0.075
LI (2) 040	1.00724	σ* N45-O47	0.05719	19.13	0.73	0.107
LP(2)047	1 89425	σ* C17-N45	0.11057	13 99	0.75	0.079
LI (2) 0 17	1.09 125	σ* N45-O46	0.06231	18.99	0.72	0.106
N2						
π C6-C7	1.80037	π* C9-C10	0.28502	15.77	0.33	0.066
		π* C24≡N25	0.10670	20.05	0.39	0.081
π C9-C10	1.85893	π* C6-C7	0.44145	13.55	0.27	0.059
π C15-C16	1.63799	π^* C13-O14	0.29588	17.85	0.29	0.065
		π* C17-C20	0.33599	22.42	0.29	0.072
		π^* C18-C21	0.29195	17.51	0.29	0.065
π C17-C20	1.63918	π^* C15-C16	0.36093	17.80	0.29	0.064
		π* C18-C21	0.29195	21.68	0.29	0.073
G10 G 0 1	1 (2002	π^* N45-O47	0.61452	22.79	0.15	0.057
π C18-C21	1.63092	π* CI5-CI6	0.36093	23.23	0.28	0.072
	1 (1005	$\pi^* C1/-C20$	0.33599	19.28	0.28	0.067
LP (2) S8	1.61827	π [*] C6-C7	0.44145	27.20	0.25	0.074
ID (1) N111	1 (525)	π [*] C9-C10	0.28502	19.00	0.29	0.068
LP(1)NII	1.05356	π [*] C6-C/	0.44145	57.63	0.29	0.096
ID(2) O14	1 05417	π^{-1} C13-O14	0.29588	52.28	0.29	0.112
LP(2) O14	1.8341/	σ* CI3-CI3	0.00/99	19.20	0.6/	0.103
LF (2) 040	1.89082	0° C20-IN43	0.11430	15.84	0.55	0.078
ID(2)O47	1 80561	0 \cdot 1N45-U4/ σ^* C20 N45	0.0348/	18.04	0.73	0.105
Lr(2)04/	1.89301	$0^{\circ} C20-IN43$	0.11430	14.14	0.55	0.079
		σ ^{**} IN43-U46	0.03570	18.84	0.73	0.106

N3						
π C6-C7	1.79972	π* C9-C10	0.28521	15.77	0.33	0.066
		π* C23≡N24	0.10568	19.90	0.39	0.081
π C9-C10	1.85741	π* C6-C7	0.44116	13.61	0.27	0.059
π C15-C16	1.63694	π* C13-O14	0.29737	17.05	0.28	0.063
		π* C17-C20	0.27040	18.47	0.29	0.067
		π* C18-C21	0.36561	21.12	0.28	0.070
π C17-C20	1.62622	π* C15-C16	0.36393	21.77	0.28	0.070
		π* C18-C21	0.36561	21.99	0.28	0.070
π C18-C21	1.63806	π* C15-C16	0.36393	19.10	0.29	0.067
		π* C17-C20	0.27040	19.23	0.30	0.070
		π* N45-O47	0.61911	25.28	0.15	0.059
LP (2) S8	1.61864	π* C6-C7	0.44116	27.08	0.25	0.074
		π* C9-C10	0.28521	19.01	0.29	0.068
LP (1) N11	1.65065	π* C6-C7	0.44116	37.67	0.29	0.096
		π* C13-O14	0.29737	52.54	0.29	0.112
LP (2) O14	1.85524	σ* C13-C15	0.06728	19.05	0.67	0.103
LP (2) O46	1.89665	σ* C21-N45	0.11310	13.84	0.56	0.079
		σ* N45-O47	0.05530	18.74	0.73	0.106
LP (2) O47	1.89655	σ* C21-N45	0.11310	13.84	0.56	0.079
		σ* N45-O46	0.05542	18.75	0.73	0.106

Table S5. The chemical reactivity values of the studied compounds

		H (-I)	L (-A)	ΔΕ	χ	η	ω (eV)	$\omega^{+}(au)$	$\omega^{+}(au)$	ΔN_{max}	$\Delta \epsilon_{\text{back-donat.}}$
-	C1	-6.154	-1.880	4.274	-4.017	2.137	0.139	0.075	0.222	1.880	-0.534
L	C2	-6.153	-2.119	4.035	-4.136	2.017	0.156	0.089	0.241	2.050	-0.504
lorofo	C3	-6.131	-2.084	4.047	-4.108	2.023	0.153	0.087	0.238	2.030	-0.506
	N1	-6.182	-2.908	3.275	-4.545	1.637	0.232	0.156	0.323	2.776	-0.409
Ch	N2	-6.215	-2.950	3.265	-4.583	1.633	0.236	0.160	0.328	2.807	-0.408
Ŭ	N3	-6.230	-3.144	3.086	-4.687	1.543	0.262	0.183	0.355	3.038	-0.386
	C1	-6 166	_1 900	1 267	-4.033	2 1 2 3	0 140	0.076	0.224	1 800	-0 533
-	C^{1}	-6.150	-2 100	4.040	-4.000	2.155	0.140	0.070	0.224	2 044	-0.505
out		-6.130	-2.109	4.052	-4.104	2.020	0.153	0.087	0.240	2.044	-0.505
th	N1	-6.197	-2.078	3 260	-4 567	1.630	0.133	0.087	0.237	2.020	-0.300
Me	N2	-6 187	-2.957	3 231	-4 572	1.615	0.233	0.157	0.327	2.830	-0 404
, ,	N3	-6.197	-3.135	3.061	-4.666	1.531	0.261	0.183	0.354	3.048	-0.383
	C1	6 167	1 001	1 766	4 02 4	2 1 2 2	0.140	0.076	0 224	1 201	0.522
		-0.10/	-1.901	4.200	-4.034	2.155	0.140	0.070	0.224	2.044	-0.333
	C_2	-0.149	-2.108	4.041	-4.129	2.020	0.155	0.088	0.240	2.044	-0.303
~	UJ N1	-0.129	-2.077	4.052	-4.105	2.020	0.155	0.007	0.237	2.023	-0.307
SC	INI NO	-0.190	-2.939	2 2 2 2 0	-4.509	1.029	0.233	0.159	0.327	2.004	-0.407
Σ	INZ N2	-0.165	-2.937	3.229	-4.3/1	1.014	0.258	0.101	0.529	2.032	-0.404
Π	INJ NI	-0.195	-5.154	2 257	-4.005	1.550	0.201	0.165	0.334	2 806	-0.383
	INI NO	-0.198	-2.941	3.237	-4.370	1.029	0.230	0.159	0.327	2.800	-0.407
	INZ	-0.184	-2.95/	3.226	-4.5/0	1.013	0.238	0.101	0.329	2.833	-0.403
	IN 3	-6.193	-3.134	3.039	-4.663	1.529	0.261	0.183	0.354	3.049	-0.382

Table S6. Active site analysis of crystal structure of SarA and BSA with the molecules (blue: H-bond, purple: piinteractions, red: alkyl interactions, black: van der Waals interactions)

Molecules	BA*	Amino Acids Residue		
		Bovine Serum Albumin		
C1	-8.17	Ser192, Ser428, Arg458, His145, Ala193, Pro146, Arg196, Asp108, Tyr147, Phe148,		
		Leu189, Thr190, Gln195, Glu424, Arg435, Leu454, Ile455		
C2	-8.54	His145, Ser192, Ser428, Arg458, Ala193, Pro146, Phe148, Arg196, Asp108, Tyr147,		
		Leu189, Thr190, Gln195, Arg435, Leu454, Ile455		

C3	-7.06	His145, Ser428, Pro146, Tyr147, Leu189, Ala193, Arg196, Asp108, Phe148, Thr190,
		Ser192, Glu424, Lys431, Arg435, Ile455, Arg458
N1	-8.43	Leu189, Ser192, Arg458, Ala193, Pro146, Arg196, His145, Tyr147, Phe148, Thr190,
		Ser428, Arg435, Leu454, Ile455, Val461
N2	-8.84	Ser192, Ser428, Arg458, His145, Ala193, Pro146, Arg196, Asp108, Tyr147, Phe148,
		Tyr149, Leu189, Thr190, Gln195, Arg435, Leu454, Ile455
N3	-7.66	His145, Tyr148, Phe148, Arg196, Ser428, Ser192, Leu189, Ala193, Asp108, Arg144,
		Pro146, Thr190, Glu424, Lys431, Arg435, Ile455, Arg458
		Human Leukemia Inhibitory Factor
C1	-7.24	Val88, Gly96, Leu95, Ala120, Val89, Leu95, Ala120, Gly92, Thr93, Thr99, Arg100,
		Leu116, Asn117, Leu123, Leu127, Tyr147
C2	-7.29	Gly92, Thr93, Arg124, Leu95, Leu116, Ala120, Val88, Val89, Gly96, Thr99, Arg100,
		Asn117, Leu123, Leu127, Tyr147
C3	-7.13	Val88, Gly92, Arg124, Ala120, Val89, Thr93, Leu95, Gly96, Thr99, Arg100, Lys103,
		Asn117, Leu123, Leu127, Tyr147
N1	-7.90	Gly96, Arg124, Gly92, Ala120, Val88, Val89, Thr93, Leu95, Thr99, Arg100, Asn117,
		Leu123, Leu127, Tyr147
N2	-8.48	Gly92, Thr93, Arg100, Arg124, Ala120, Val88, Val89, Leu95, Gly96, Thr99, Lys103,
		Asn117, Leu123, Leu127, Tyr147
N3	-8.36	Gly96, Arg100, Lys103, Asn117, Arg124, Ala120, Val88, Val89, Gly92, Thr93,
		Leu95, Thr99, Leu123, Leu127, Tyr147

Fig. S39. Interaction residue in Human Leukemia Inhibitory Factor (middle), and interaction type of the molecules, (turquoise and green: H-bonds; fuchsia: pi-interactions; pink: alkylic interactions; pale green: van der Waals)

Fig. S40. Interaction residue in DNA dodecamer and interaction type of the molecules