Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Photodegradation of Methylene Blue Using Ce_xZr_vO₂ Nanocomposites

Prepared via Non-stoichiometry Method

Xingmin Chen,^{a1} Peishen Li,^{bc1} Shuai Gao,^b Mingming Sun,^b Qiang Wang,^{b*} Wen Liu^c and Sihui

Zhan^{a*}

^aCollege of Environmental Sciences and Engineering, Nankai University, Tianjin 300350, China. E-mail: sihuizhan@nankai.edu.cn

^bLaboratory for Micro-sized Functional Materials & College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing, 100048, China. E-mail: qwchem@gmail.com

^cCollege of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences (MOE), Peking University, Beijing 100871, China.

¹The authors contributed equally to this paper.

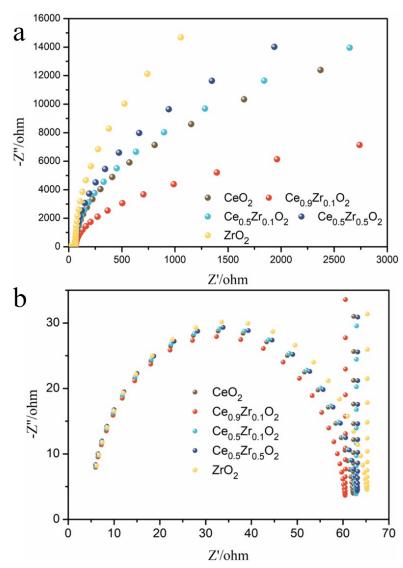
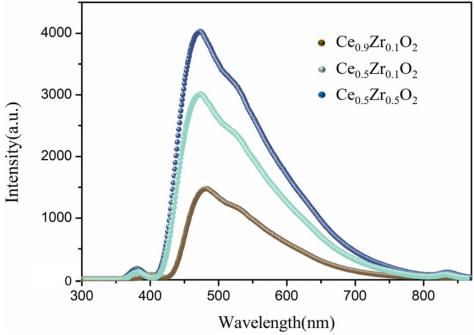
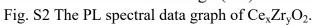




Fig. S1 (a) and (b) Nyquist plots of the various $Ce_xZr_yO_2$ nanocomposites, CeO_2 and ZrO_2 .

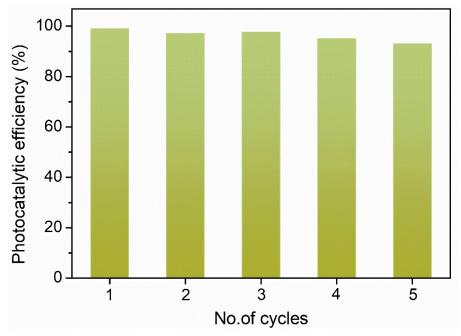


Fig. S3 Repeated photocatalytic tests of $Ce_{0.9}Zr_{0.1}O_2$.

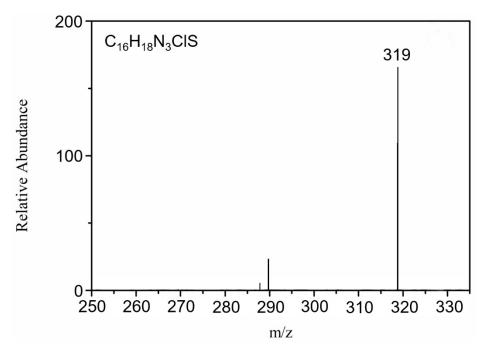


Fig. S4 Mass spectrum of MB during photocatalytic degradation reaction.

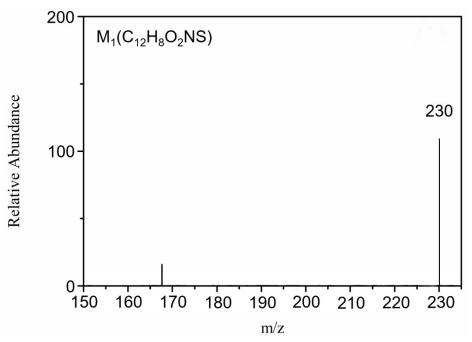


Fig. S5 Mass spectrum of reaction products M_1 during photocatalytic degradation of MB.

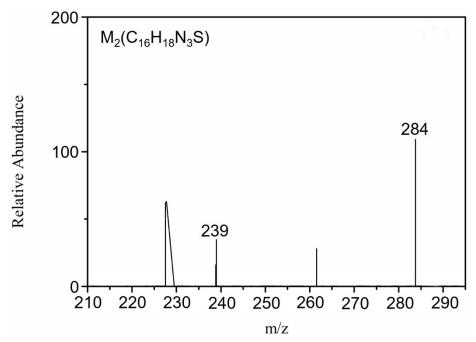


Fig. S6 Mass spectrum of reaction products M_2 during photocatalytic degradation of MB.

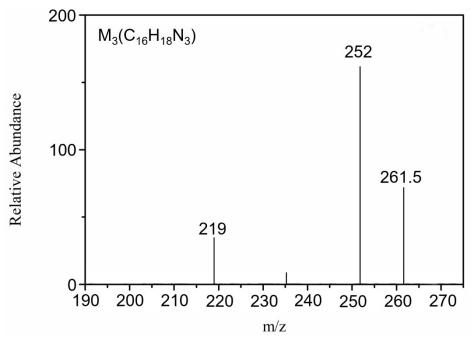


Fig. S7 Mass spectrum of reaction products M₃ during photocatalytic degradation of MB.

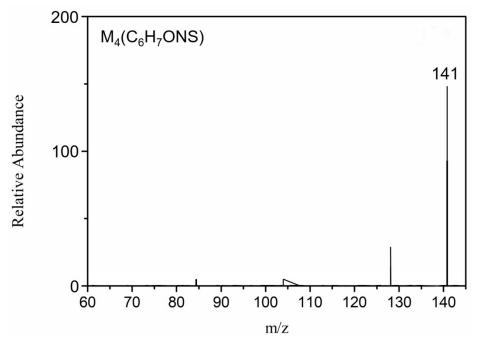


Fig. S8 Mass spectrum of reaction products M₄ during photocatalytic degradation of MB.

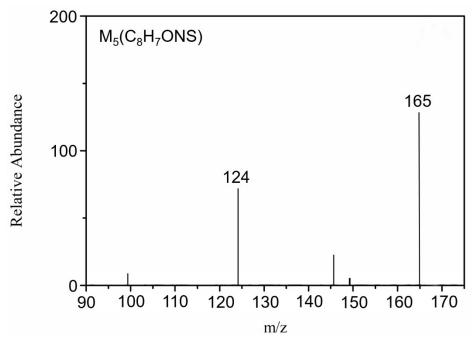


Fig. S9 Mass spectrum of reaction products M_5 during photocatalytic degradation of MB.

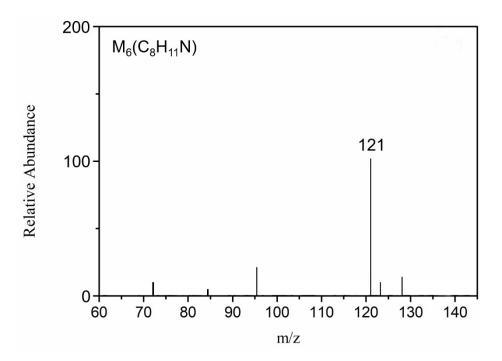


Fig. S10 Mass spectrum of reaction products M_6 during photocatalytic degradation of MB.

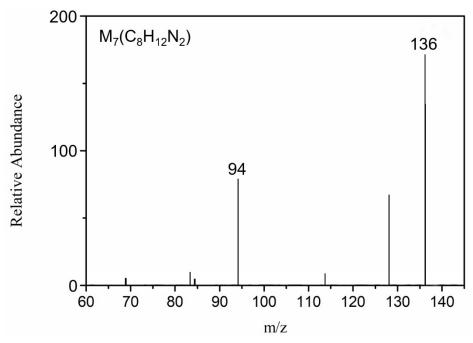


Fig. S11 Mass spectrum of reaction products M₇ during photocatalytic degradation of MB.

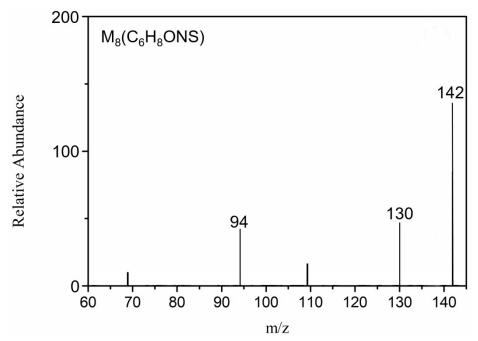


Fig. S12 Mass spectrum of reaction products M_8 during photocatalytic degradation of MB.

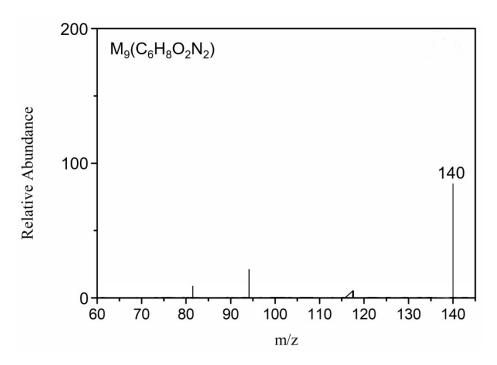


Fig. S13 Mass spectrum of reaction products M₉ during photocatalytic degradation of MB.

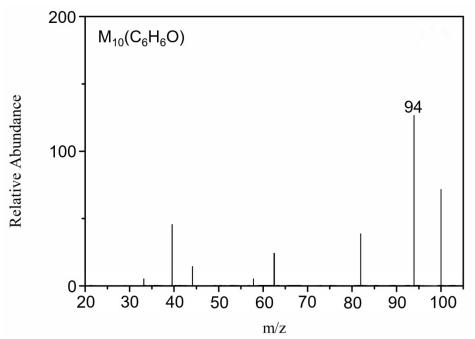


Fig. S14 Mass spectrum of reaction products M_{10} during photocatalytic degradation of MB.

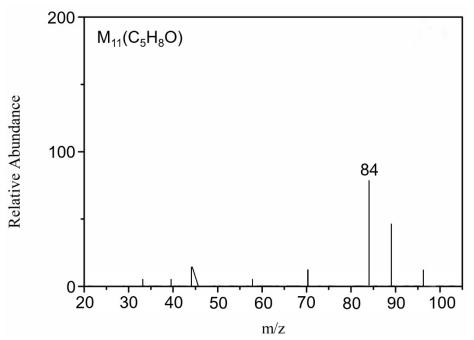


Fig. S15 Mass spectrum of reaction products M_{11} during photocatalytic degradation of MB.

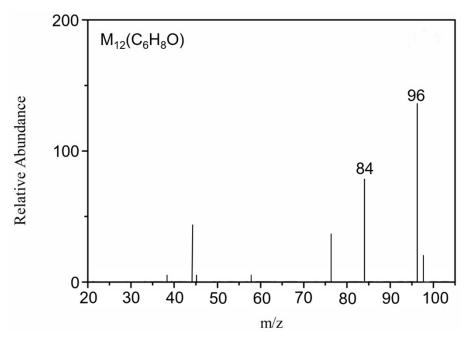


Fig. S16 Mass spectrum of reaction products M_{12} during photocatalytic degradation of MB.

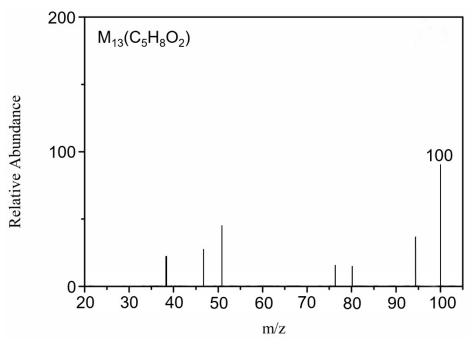


Fig. S17 Mass spectrum of reaction products M₁₃ during photocatalytic degradation of MB.

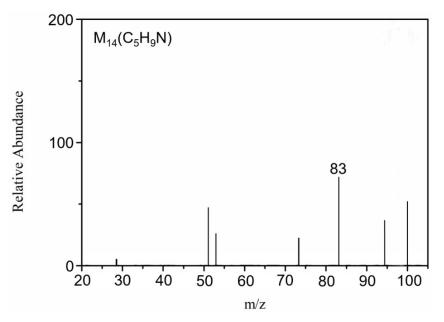


Fig. S18 Mass spectrum of reaction products M_{14} during photocatalytic degradation of MB.

Materials	Response time	Degradation rate	Ref.
$Ce_{0.9}Zr_{0.1}O_2$	120 min	99.04%	This work
B-TiO ₂ / MIL-100(Fe)	60 min	91.12%	1
ZnS/Cu-2%	360 min	56%	2
Cr/CeO ₂	100 min	59%	3
Pd/TiO ₂	120 min	96.90%	4
Ag/CoFe ₂ O ₄	30 min	>95%	5
TM-2-d	720 min	96%	6
SiO ₂ commercial ceramic supports	300 min	94%	7
0.1% Ag-ZnO	210 min	92.90%	8
Bi _{0.9} Gd _{0.07} La _{0.03} FeO ₃	90 min	95%	9
3at% Tb-doped	150 min	98.20%	10

Table S1. Photocatalytic degradation of methylene blue (MB) performance data comparison.

References

1. Liu, L.; Liu, Y.; Wang, X.; Hu, N.; Li, Y.; Li, C.; Meng, Y.; An, Y., Synergistic effect of B-TiO₂ and MIL-100(Fe) for high-efficiency photocatalysis in methylene blue degradation. *Applied Surface Science* **2021**, *561*.

2. Mehrabian, M.; Esteki, Z., Degradation of methylene blue by photocatalysis of copper assisted ZnS nanoparticle thin films. *Optik* **2017**, *130*, 1168-1172.

Habib, I. Y.; Burhan, J.; Jaladi, F.; Lim, C. M.; Usman, A.; Kumara, N. T. R. N.; Tsang, S. C.
E.; Mahadi, A. H., Effect of Cr doping in CeO₂ nanostructures on photocatalysis and H₂O₂ assisted methylene blue dye degradation. *Catalysis Today* 2021, *375*, 506-513.

4. Nguyen, C. H.; Fu, C.-C.; Juang, R.-S., Degradation of methylene blue and methyl orange by palladium-doped TiO₂ photocatalysis for water reuse: Efficiency and degradation pathways. *Journal of Cleaner Production* **2018**, *202*, 413-427.

5. Feng, X.; Ma, L.; Cai, F.; Sun, C.; Ding, H., Ag/CoFe2O4 as a Fenton-Like Catalyst for the Degradation of Methylene Blue. *ChemistrySelect* **2022**, *7* (22).

6. Zhao, T.; Liu, R.; Lu, J.; Zhu, X.; Zhu, X.; Lu, K.; Zhu, H., Photocatalytic degradation of methylene blue solution by diphenylanthrazoline compounds. *Journal of Physical Organic Chemistry* **2017**, *30* (12).

7. Zarazúa-Morín, M. E.; Galindo-Luna, A. S.; Gallegos-Sánchez, V. J.; Juárez-Ramírez, I., Chemical exfoliation of silica filters used on methylene blue degradation by photocatalysis. *Chemical Papers* **2022**, *76* (9), 5627-5642.

8. Kwon, D.; Kim, J., Silver-doped ZnO for photocatalytic degradation of methylene blue. *Korean Journal of Chemical Engineering* **2020**, *37* (7), 1226-1232.

9. Mani, A. D.; Li, J.; Wang, Z.; Zhou, J.; Xiang, H.; Zhao, J.; Deng, L.; Yang, H.; Yao, L., Coupling of piezocatalysis and photocatalysis for efficient degradation of methylene blue by Bi_{0.9}Gd_{0.07}La_{0.03}FeO₃ nanotubes. *Journal of Advanced Ceramics* **2022**, *11* (7), 1069-1081.

10. Chen, W.-S.; Wu, M.-H.; Wu, J.-Y., Effects of Tb-Doped BiVO₄ on Degradation of Methylene Blue. *Sustainability* **2023**, *15* (8).