Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Poly(2,3-disulfide-1,4-benzoquinone) as a high-performance cathode

for rechargeable aqueous zinc-ion batteries

Chuanzheng Zhu^a, Jin Chen^c, Bingjie Zhao^a, Xin Jiao^a, Zhiqiang Luo^{a*} and Kaixiang Lei^{b*}

^{a.} Tianjin Key Laboratory for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China.

^{b.} State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.

^{c.} Southwest Institute of Technology and Engineering, Chongqing, 400039, China.

* Corresponding authors (E-mail: zhqluo@email.tjut.edu.cn; kaixianglei@hebut.edu.cn)

Figure S1. The Raman spectra of PSBQ.

Figure S2. Thermal stability of PSBQ.

Figure S3. XRD spectra of PSBQ.

Figure S4. XPS spectra of PSBQ electrode in various states.

Figure S5. Ex situ IR spectra of PSBQ electrode in charge and discharge states.

Discharge to 0.6V

Figure S6. SEM-mapping of PSBQ electrode in charge and discharge states.

Figure S7. (a) GITT curve for Zn ||PSBQ battery with 3 M $ZnSO_4$ Aqueous electrolyte. (b) Diffusion coefficient.

Figure S8. (a) Typical discharge/charge curves at a current density of 0.2C with electrolyte of 1M $Zn(OTF)_2$ in DMF. (b) Rate capability. (c) GITT curve for Zn||PSBQ battery with electrolyte of 1M $Zn(OTF)_2$ in DMF. (d) Diffusion coefficient.

Figure S9. (a) Logarithmic relationship of peak current and scan rate. (b) CV curve at 0.5 mV s⁻¹ with capacitive currents (klv) outlined in the blue area.

Figure S10. The image of open-circuit voltage of Flexible Zn||PSBQ battery.

Figure S11. Zn||PSBQ flexible battery selected discharge/charge curve at 180 $^\circ\,$.

Figure S12. Zn || PSBQ flexible battery selected discharge/charge curve at 90° .

Table S1. Comparison of the electrochemical performance of Zn-PSBQbattery with reported aqueous Zn-polymer batteries at a current densityof about 1 A g^{-1} .

Cathode Materials	Electrolyte	Discharge capacity (mAh g ⁻¹) ^{a)}	Voltage range (V)	Working Voltage (V)	Energy Density (Wh kg ⁻¹) ^{a)}
OAP ^[1]	3 M Zn(CF ₃ SO ₃) ₂	105.1	0.2-1.2	0.65	68.3
PCSA ^[2]	3 M Zn(CF ₃ SO ₃) ₂	40	0.2-1.6	0.875	35
PQTU ^[3]	1 M ZnSO ₄	40	0.2-1.7	1	40
PBQS ^[4]	3 M Zn(CF ₃ SO ₃) ₂	126	0.2-1.7	1	126
PTMA ^[5]	2 M Zn(CF ₃ SO ₃) ₂	80	1-1.8	1.5	120
PQN14 ^[6]	1 M Zn(CF ₃ SO ₃) ₂	67	0.2-1.6	0.7	46.9
2, 6- NAPD ^[7]	1 M ZnSO ₄	58	0.5-1.5	0.8	46.4
PDBS ^[8]	2 M ZnSO ₄	230	0.4-1.4	0.7	161
PSBQ	3 M ZnSO ₄	198	0.6-1.6	1.1	217

^{a)}The values are calculated based on the mass of stoichiometric cathode.

Elemental Name	Peak BE	FWHM eV	Area (P)CPS.eV	Atomic %
F1s	689.08	2.81	248805.1	21.52
Zn2p3	1021.94	3.01	153952.49	3.58
C1s	284.41	1.76	216601.73	56.56
Ols	531.77	3.11	148212.25	16.01
S2p	167.72	5.11	16520.11	2.33

Table S2. Elemental analysis of PSBQ-Zn based on the XPS data.

References

- 1 X. Gao, Z. Liu, X. Tuo, S. Chen, S. Cai, M. Yan, Q. Zhang and Z. Liu, A case study on storage and capacity fading mechanism of poly(perylene diimides) cathode in aqueous zinc ion battery. *Electrochim. Acta*, 2023, **453**, 142321.
- 2 C. Guo, Y. Liu, D. Wu, J. Wang, X. Shen, C. Jia, J. Zhang and L. Wang, Auxiliary coordination strategy designed poly(chloranil-squaricamide) cathode achieving enhanced specific capacity utilization and Zn²⁺ insertion/extraction for aqueous zinc ion batteries. *J. Electroanal. Chem.*, 2023, **940**, 117511.
- 3 C. Guo, Y. Liu, L. Wang, D. Kong and J. Wang, Poly(quinone-thiourea) with improved auxiliary coordination Zn²⁺ insertion/extraction positive performance for aqueous zinc ion battery cathodes. ACS Sustain. Chem. Eng., 2021, **10**, 213-223.
- 4 G. Dawut, Y. Lu, L. Miao and J. Chen, High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. *Inorg. Chem. Front*, 2018, **5**, 1391-1396.
- 5 L. Elbinger, E. Schroter, C. Friebe, M. D. Hager and U. S. Schubert, Hydrophilic crosslinked TEMPOmethacrylate copolymers – a straight forward approach towards aqueous semi-organic batteries. *ChemSusChem*, 2022, **15**, e202200830.
- 6 C. Guo, Y. Liu, J. Zhang, W. Zhao, K. Wang, M. Su, Y. Hu and L. Wang, Poly(quinone-1,4-diaminoanthraquinone) cathodes for stable Zn²⁺ storage in aqueous zinc-ion batteries. *Ionics*, 2023, **21**, 2319-2328.
- 7 Y. Xie, W. Su, Q. Hu, F. Lai, Z. Yan, G. Huang, S. Lu and X. Zhang, Electropolymerization reactiondriven 2,6naphthalenediamine monomers to a multilayered sheet structure for ultralong cycling aqueous zinc-ion batteries. *New J. Chem*, 2022, **46**, 18244-18250.
- 8 T. Sun, Z. J. Li, Y. F. Zhi, Y. J. Huang, H. J. Fan and Q. Zhang, Poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc–organic batteries. *Adv. Funct. Mater.*, 2021, **31**, 2010049.