Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Industrially oriented method for the aqueous phase oxidation of crude 5hydroxymethyl furfural (HMF) to 2,5-furandicarboxylic acid (FDCA)

Priya Lokhande,^{#ab} Kalyani Sonone^{#a} and Dr. Paresh L. Dhepe *ab

^aCatalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

[#]Equal author contribution

*Corresponding author

E-mail: pl.dhepe@ncl.res.in; Tel: +91 20 25902024.

Ent ry	Name of the catalyst	Reaction Conditions	FDCA Yield (%)	HMF conversion (%)	References
1	Fe-POP	10 bar O ₂ ,100°C,10h,	79	100	1
2	Fe ₃ O ₄ -CoO _X	t-BuOOH,80°C,12h	68.6	97.2	2
3	$Fe_{0.6}Zr_{0.4}O_2$	(Bmim)Cl, 20 bar O ₂ ,160°C,24h,	60.6	99.7	3
4	Ce _{0.5} Fe _{0.15} Zr _{0.35} O ₂	(Bmim)Cl, 20 bar O ₂ ,140ºC,24h	44.2	99.9	4
5	MnO ₂	NaHCO ₃ , 10 bar O ₂ ,100ºC,24h	91	99	5
6	MOF-Mn ₂ O ₃	NaHCO ₃ , 14 bar O ₂ ,100ºC,24h	99.5	100	6
7	MnO _x -CeO ₂	KHCO₃, 20 bar O₂,110ºC,15h	91	98	7
8	MnCO ₂ O ₄	KHCO ₃ , 20 bar O ₂ ,100ºC,24h	70.9	99.5	8
9	Co ₃ O ₄ /Mn _x Co	Base free, 14 bar O ₂ ,140ºC,24h	99	100	9
10	NNC-1173	K ₂ CO ₃ , 1 bar O ₂ ,80°C,48h	80	100	10
11	Co-Mn _{0.25}	NaHCO ₃ ,10 bar O ₂ ,120°C, 5h	95	99	11
12	Co/Mn/Br	1/0.015/0.5 molar ratio of Co, Mn, and Br, 7% (v/v) water, 30 bar (CO ₂ /O ₂ = 1/1, mol/mol), 180°C,0.5h	90	99	12
13	Mn _x Fe _y	NaOH,8 bar O ₂ ,90°C, 24h	30	93	13
14	Li ₂ CoMn ₃ O ₈	NaOH, NaBr, Acetic acid, water, 55 bar O ₂ ,150°C, 8h	85	100	14
15	CuCl t-BuOOH, MeCN, TEMPO, RT, 48h		45	100	15

Table S1: Summary on the non-noble metal catalysts for the oxidation of HMF to FDCA

Catalyst characterization

X-ray diffraction study (XRD)

In Figure 1. traces of CuO were also detected in the XRD pattern. Peaks for MnOx, along with Mn_3O_4 also have some contribution.

Mn₂O₃ (Cubic),2θ = 18°,33.5°, 36°, 41°,54°

 MnO_2 (00-050-0866) and Mn_2O_3 (00-001-1061)

CuO (00-045-0937 and 00-003-0884) Cu_{1.5}Mn_{1.5}O₄ (00-035-1171)

Cu₂O plain 110 (30°),111 (36°),200 (43°),211 (53°),220 (61°), (JCPDS 01-071-3645 and 05-0667)

Table S2: Summary of the results obtained by using different mixed metal oxides on cruc	de
HMF (80-90%) oxidation	

Sr.	Catalyst	Temp.	Time	Press.O2	FDCA Sel.	HMF
No.	(M:M' mol ratio)	(°C)	(h)	(bar)	(%)	Conv. (%)
1	Without catalyst	120	6	10	4	90
2	Co-Mn (1:4)	120	4	10	65	100
3			4		30	78
4	Co-Mn-Ce (1:4:1)	120	6	10	53	96
5			8		52	98
6	Co-Mn-Ce (1:4:0.25)	120	4	10	67	95
7		_	6	-	75	100
8		140	6	6	80	100
9	Co-Mn-Fe (1:4:1)	120	4	10	68	95
10			8	15	78	98
11	Co-Mn-Fe-Zr (1:4:0.5:0.5)	120	4	10	62	95
12		-	8		67	97
13	Cu-Mn (1:4)	120	4	10	75	92
14			8	15	90	100
15	Co-Mn-Zr (1:4:1)	120	8	10	68	100
16		140	6	12	73	100

17	Mn-Fe-Cu (4:1:1)	120	6	10	19	97
18	Mn-Fe-Ce (4:1:0.25)	140	6	6	54	96
19	Co-Cu-Mn (1:1:4)	120	10	10	42	100
20	Co-Mn-V (1:4:1)	120	6	10	2	53
21	Co-Cu-Mn-Ce (1:1:4:0.25)	120	6	10	60	92
22	Co-Cu-Mn- Fe(1:1:4:1)				62	95
23	Co-Mn/HT				52	92
24	Co-Mn-Ce/HT	120			59	96
25	Cu-Mn-Ce (1:4:0.25)				49	88
26	Cu-Mn-Fe- Zr(1:4:1:1)				54	93
27	Ru/Co-Mn (1:4)		6	10	75	95
28	Ru-Co-Mn-Ce (1:4:0.25)				85	100
29	Ru-Cu-Mn (1:4)	120			83	100
30	[#] Ru/Carbon				93	100
31	Ru-Co-Mn-Ce/C (1:4:0.25)			4	90	100
32	Co/NG	120	8		35	98
33	CuO _x /MC	120	6		45	100
34	MnO _x -CoO _x /MC	120	6		35	100
35	CuMn/NG	120	8		53	100

*Reaction condition: 0.5wt% Solution of crude HMF (Purity 80-90%), Catalyst (0.5 g), Water (30mL), Base (Na₂CO₃: 0.15 g). (MC= Mesoporous carbon, NG= Nitrogen-doped graphene) #0.25 g catalyst. *Note: When a solid base is used in the reaction, homogeneous base is not used*.

Product analysis and characterization

Figure S1. HPLC profile of the reaction mixture

Figure S2. ¹H NMR spectrum of isolated FDCA obtained after the reaction. Solvent: DMSO

Figure S3. ¹³C NMR spectrum of isolated FDCA obtained after the reaction. Solvent: DMSO

Figure S4. HRMS spectra of isolated FDCA obtained after the reaction.

The peak at M/Z of 179 [M+Na] in the HR-MS profile confirmed the formation of Na salt of FDCA.

Figure S5. FTIR spectrum of isolated FDCA obtained after the reaction.

FTIR (v cm⁻¹) 3151, 3125 (-OH); 1701 (C=O); 1571, 1423 (Furan Ring -C=C-); 1274 (ester-C-O-), 1228 (furan ring -C-O); 962, 853, 762 (=CH).

Figure S6. XRD of spent Cu-Mn Catalyst

References

- 1. B. Saha, D. Gupta, M. M. Abu-Omar, A. Modak and A. Bhaumik, *Journal of Catalysis*, 2013, **299**, 316-320.
- 2. S. Wang, Z. Zhang and B. Liu, ACS Sustainable Chemistry & Engineering, 2015, **3**, 406-412.
- 3. D. Yan, G. Wang, K. Gao, X. Lu, J. Xin and S. Zhang, *Industrial & Engineering Chemistry Research*, 2018, **57**, 1851-1858.
- 4. D. Yan, J. Xin, C. Shi, X. Lu, L. Ni, G. Wang and S. Zhang, *Chemical Engineering Journal*, 2017, **323**, 473-482.
- 5. E. Hayashi, T. Komanoya, K. Kamata and M. Hara, *ChemSusChem*, 2017, **10**, 654-658.
- 6. L. Bao, F.-Z. Sun, G.-Y. Zhang and T.-L. Hu, *ChemSusChem*, 2020, **13**, 548-555.
- 7. X. Han, C. Li, X. Liu, Q. Xia and Y. Wang, *Green Chemistry*, 2017, **19**, 996-1004.
- 8. S. Zhang, X. Sun, Z. Zheng and L. Zhang, *Catalysis Communications*, 2018, **113**, 19-22.
- 9. T. Gao, Y. Yin, G. Zhu, Q. Cao and W. Fang, *Catalysis Today*, 2020, **355**, 252-262.
- 10. C. V. Nguyen, Y.-T. Liao, T.-C. Kang, J. E. Chen, T. Yoshikawa, Y. Nakasaka, T. Masuda and K. C. W. Wu, *Green Chemistry*, 2016, **18**, 5957-5961.
- 11. K. T. V. Rao, J. L. Rogers, S. Souzanchi, L. Dessbesell, M. B. Ray and C. Xu, *ChemSusChem*, 2018, **11**, 3323-3334.
- 12. X. Zuo, P. Venkitasubramanian, D. H. Busch and B. Subramaniam, *ACS Sustainable Chemistry & Engineering*, 2016, **4**, 3659-3668.
- 13. F. Neațu, R. S. Marin, M. Florea, N. Petrea, O. D. Pavel and V. I. Pârvulescu, *Applied Catalysis B: Environmental*, 2016, **180**, 751-757.
- 14. A. Jain, S. C. Jonnalagadda, K. V. Ramanujachary and A. Mugweru, *Catalysis Communications*, 2015, **58**, 179-182.
- 15. T. S. Hansen, I. Sádaba, E. J. García-Suárez and A. Riisager, *Applied Catalysis A: General*, 2013, **456**, 44-50.