Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Efficient Synthesis of Quinolines through Alkali Catalysed

Cascade Oppenauer Oxidation/Condensation of Amino

Alcohols with Ketones

Yuan Liu^[a,b], Peizhi Bai^[a], Yue Hu^[a] and Yinjun Xie^{*[a]}

^[a]Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering of the Chinese Academy of Sciences (CAS), Ningbo, 315201, P. R. China

^[b]School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China

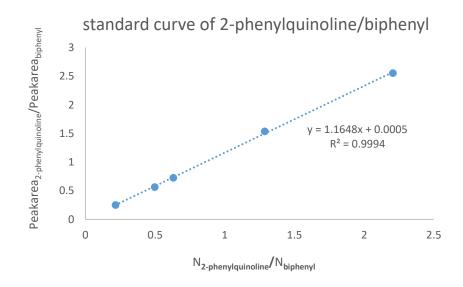
*To whom correspondence should be addressed. Email: <u>xieyinjun@nimte.ac.cn</u>

Contents

1.	General Information	52
2.	General procedure for the synthesizing of quinolines	52
3.	Optimization of the reaction conditions	33
4.	Optimized procedure for synthesizing of quinolines	57
5.	Experimental characterization data for products 3	58
6.	NMR Spectra	17
7.	References	19

1. General Information

All experiments were carried out in Vigor LG2400/750TS-F glovebox under inert atmosphere of purified nitrogen or using standard Schlenk techniques. All solvents used in the catalytic reactions were purified according to standard procedures and stored over 4 Å molecular sieves in the glovebox. NMR spectra were recorded on Bruker 400 MHz AVANCE III and AVANCE NEO 600MHz spectrometer. NMR spectroscopy abbreviations: br, broad; s, singlet; d, doublet; t, triplet; m, multiplet; v, virtual; bm, broad multiplet; bs, broad singlet. GC analysis was carried out on Agilent 8860 with Hp-5 column, flame ionization detector, and nitrogen as carrier gas. GS-MS analysis was carried out on Agilent 8860/5977B GC-MS system with MS detector, and helium as carrier gas.


2. General procedure for the synthesizing of quinolines

In a N₂ atmosphere glovebox, 2-aminobenzyl alcohol (0.5 mmol), acetophenone (0.5 mmol), base (0.025 mmol) and toluene (1 mL) were added to a dried 25 mL Young -type tube (Sealed tube). The tube was taken out and heated in an oil bath for 12 hours. The reaction mixture was taken out of the oil bath and cooled down to room temperature. Then biphenyl was added to the reaction mixture as an internal standard. After filtration, 50 μ L of solution was diluted with CH₃OH and CH₂Cl₂, and the yield was determined by GC.

3. Optimization of the reaction conditions

Entry	biphenyl (mmol)	2- phenylquinoline (mmol)	biphenyl (peak area)	2- phenylquinoline (peak area)
1	0.093	0.205	11193.5	28584.4
2	0.104	0.133	13043.8	20065.5
3	0.105	0.066	14597.7	10594.7
4	0.092	0.046	11332.8	6409.8
5	0.108	0.023	11074.7	2806.8

Table S1. Measurement of the relative GC response factors of 2-phenylquinoline/biphenyl

Figure S-1 Linear standard curve based on 2-phenylquinoline and biphenyl GC conditions (for organic compounds): Agilent 8860 GC system; Column: HP-5, 30 m, 320 μm, Inlets: 280 °C; Detector: FID 280 °C; Carrier Gas: N₂; Flow: 1 mL/min; Oven: 50 °C, hold 4 min; 15 °C/min to 280 °C, hold 4 min.

Entry	biphenyl (mmol)	2-aminobenzyl alcohol (mmol)	biphenyl (peak area)	2-aminobenzyl alcohol (peak area)
1	0.093	0.038	11193.5	2121.9
2	0.104	0.067	13043.8	4382.4
3	0.105	0.133	14597.7	9219.8
4	0.092	0.260	11332.8	15932.0
5	0.108	0.341	11074.7	17626.9

 Table S2. Measurement of the relative GC response factors of 2-aminobenzyl alcohol

 /biphenyl

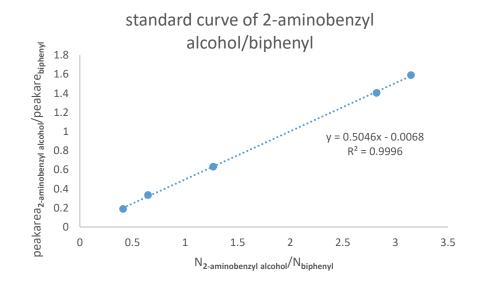


Figure S-2 Linear standard curve based on 2-aminobenzyl alcohol and biphenyl

	OH NH ₂ +	Base (5 mol%) oluene, 130 °C, 12 h	NPh
	1a 2a		3aa
Entry	Base	Conv. (%)	3aa Yield (%)
1	KOt-Bu	70	45
2	КОН	52	29
3	KOCH ₃	51	33
4	NaOt-Bu	79	67
5	NaOH	74	55
6	NaOCH ₃	73	59
7	NaOEt	79	62
8	NaH	92	79
9	K ₂ CO ₃	42	3
10	K ₃ PO ₄	34	12
11	CsOH·H ₂ O	89	72
12	Ce(OH) ₄	41	0
13	LiOt-Bu	46	18
14	LiH	38	18
15	LiOH·H ₂ O	33	8

Table S3. Screening of bases.

Reaction conditions: 2-aminobenzyl alcohol (0.5 mmol), acetophenone (0.5 mmol), base (0.025 mmol) and toluene (1 mL), oil bath 130 °C, 12 h. Yields and conversions were determined by GC using biphenyl as the internal standard.

 Table S4. Screening of solvents.

$\begin{array}{c} & & & \\ & &$				
Entry	Solvent	Conv. (%)	3aa Yield (%)	
1	1,4-dioxane	78	69	
2	THF	70	54	
3	o-xylene	63	44	
4	CH ₃ CN	65	36	
5	n-hexane	100	86	
6	DME	61	47	

Reaction conditions: 2-aminobenzyl alcohol (0.5 mmol), acetophenone (0.5 mmol), NaH (0.025 mmol) and solvent (1 mL), oil bath 130 °C, 12 h. Yields and conversions were determined by GC using biphenyl as the internal standard.

	Table S5	. Screening	of temperature.
--	----------	-------------	-----------------

	OH NH ₂ + -	NaH (5 mol%) n-hexane, T, 12 h	NPh
1	a 2a		3aa 3aa
Entry	Temperature	Conv. (%)	Yield (%)
1	60 °C	19	3
2	70 °C	15	3
3	80 °C	19	6
4	90 °C	42	24
5	100 °C	83	63
6	110 °C	97	91
7	120 °C	100	90

Reaction conditions: 2-aminobenzyl alcohol (0.5 mmol), acetophenone (0.5 mmol), NaH (0.025 mmol) and n-hexane (1 mL), oil bath, 12 h. Yields and conversions were determined by GC using biphenyl as the internal standard.

		NaH (5 mol%) ane, 110 °C, 12 h	NPh
	1a 2a		3aa
Entry	acetophenone (x mmol)	Conv. (%)	3aa Yield (%)
1	1.05	100	99
2	1.1	100	93
3	1.2	100	99

Table S6. Screening of ratio.

Reaction conditions: 2-aminobenzyl alcohol (0.5 mmol), acetophenone (x mmol), NaH (0.025 mmol) and n-hexane (1 mL), oil bath 110 °C, 12 h. Yields and conversions were determined by GC using biphenyl as the internal standard.

4. Optimized procedure for synthesizing of quinolines

In a N₂ atmosphere glovebox, 2-aminobenzyl alcohol (1 mmol), acetophenone (2.1 mmol), NaH (0.05 mmol) and n-hexane (2 mL) were placed in a dried 25 mL Young-type tube (Sealed tube). The tube was taken out of the glovebox and heated at 110 °C for 12 hours, then cooled down to room temperature. The reaction mixture was analyzed by GC-MS and GC. After concentration under reduced pressure to give a crude product. The residue was purified by flash column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (5/1 to 50/1) to afford the desired product **3**. The structure of these pure products were confirmed by NMR spectroscopy.

5. Experimental characterization data for products 3

2-phenylquinoline (**3aa**)¹: The title compound was prepared according to the general

procedure and purified by flash column chromatography to give white solid, 98.7 mg, 96 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.24 – 8.11 (m, 4H), 7.86 (d, J = 8.6 Hz, 1H), 7.81 (d, J = 8.1 Hz,

1H), 7.72 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.56 – 7.48 (m, 3H), 7.48 – 7.42 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.49, 148.43, 139.82, 136.89, 129.89, 129.77, 129.45, 128.97, 127.71, 127.59, 127.32, 126.41, 119.12.

2-(*p***-tolyl)quinoline (3ab)**¹: The title compound was prepared according to the general procedure and purified by flash column chromatography to give white solid, 199.8 mg, 91 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.6 Hz, 2H), 8.06 (d, *J* = 8.2 Hz, 2H), 7.83 (d, *J*

= 8.6 Hz, 1H), 7.78 (dd, J = 8.0, 1.4 Hz, 1H), 7.69 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.48 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.46, 148.40, 139.54, 136.98, 136.80, 129.77, 129.71, 127.58, 127.23, 126.22, 118.99, 21.47.

2-(*m***-tolyl)quinoline** (**3ac**)³: The title compound was prepared according to the general

3aa

procedure and purified by flash column chromatography to give colorless oil, 216.4 mg, 99 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.6 Hz, 1H), 8.12 (t, J = 9.4 Hz, 1H),

8.01 (d, *J* = 3.7 Hz, 1H), 7.92 (d, *J* = 7.2 Hz, 1H), 7.83 – 7.73 (m, 2H), 7.70 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.59, 148.33, 139.69, 138.54, 136.74, 130.18, 129.75, 129.67, 128.78, 128.33, 127.51, 127.23, 126.25, 124.78, 119.17, 21.65.

2-(*o***-tolyl)quinoline** (**3ad**)²: The title compound was prepared according to the general

procedure and purified by flash column chromatography to give colorless oil, 132.6 mg, 60 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 3.6 Hz, 1H), 8.16 (d, *J* = 3.6 Hz, 1H), 7.83 (d, *J* =

7.5 Hz, 1H), 7.72 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.56 – 7.48 (m, 3H), 7.31 (h, J = 2.8 Hz, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.37, 147.99, 140.82, 136.14, 136.08, 130.95, 129.79, 129.69, 128.59, 127.59, 126.82, 126.48, 126.09, 122.44, 20.43.
2-(4-isobutylphenyl)quinoline (3ae)¹: The title compound was prepared according to

the general procedure and purified by flash column chromatography to give white solid, 205.2 mg, 79 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (t, *J* = 8.9 Hz, 2H),

8.07 (d, J = 8.2 Hz, 2H), 7.86 (d, J = 8.6 Hz, 1H), 7.81 (dd, J = 8.0, 1.4 Hz, 1H), 7.71 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.50 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H), 2.56 (d, J = 7.2 Hz, 2H), 1.93 (dp, J = 13.6, 6.8 Hz, 1H), 0.95 (s, 3H), 0.93 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.60, 148.41, 143.36, 137.29, 136.81, 129.79, 129.71, 127.57, 127.47, 127.22, 126.21, 119.08, 45.37, 30.40, 22.51.

2-(4-methoxyphenyl)quinoline (3af)¹: The title compound was prepared according to

the general procedure and purified by flash column chromatography to give white solid, 179.6 mg, 76 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (dd, *J*=9.2, 2.4 Hz, 4H),

7.79 (dd, *J* = 12.0, 8.4 Hz, 2H), 7.69 (ddd, *J* = 8.5, 6.9, 1.5 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.95, 157.01, 148.36, 136.78, 132.31, 129.71, 129.60, 129.02, 127.55, 127.02, 126.04, 118.67, 114.35, 55.50.

2-(3-methoxyphenyl)quinoline (**3ag**)¹: The title compound was prepared according to

the general procedure and purified by flash column chromatography to give colorless oil, 230.8 mg, 98 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.5 Hz, 2H), 7.87

-7.75 (m, 3H), 7.71 (td, J = 7.6, 1.5 Hz, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.9 Hz, 1H), 7.01 (dd, J = 8.1, 2.5 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.22, 157.20, 148.28, 141.22, 136.85, 129.90, 129.81, 129.75, 127.54, 127.35, 126.41, 120.10, 119.18, 115.46, 112.81, 55.49.

2-(2-methoxyphenyl)quinoline (3ah)²: The title compound was prepared according to

OMe

the general procedure and purified by flash column chromatography to give colorless oil, 194.3 mg, 83 % yield. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 8.5 Hz, 1H), 8.12 (d, J =

8.6 Hz, 1H), 7.92 – 7.83 (m, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.54 – 7.48 (m, 1H), 7.44 - 7.38 (m, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 8.2 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.34, 157.24, 148.43, 135.19, 131.61, 130.43, 129.86, 129.75, 129.31, 127.49, 127.16, 126.28, 123.56, 121.39, 111.59, 55.76. 2-(3,4-dimethoxyphenyl)quinoline (3ai)⁴: The title compound was prepared according to the general procedure and purified by flash OMe column chromatography to give white solid, 242.1 mg, 91 % N 3ai

yield. ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 8.4 Hz, 2H), 7.88 (s, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.66 (d, J = 8.2 Hz, 1H), 7.54 – 7.46 (m, 1H), 6.98 (d, J = 8.4 Hz, 1H), 4.05 (s, 3H), 3.95 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 156.92, 150.50, 149.51, 148.33, 136.72, 132.65, 129.71, 129.63, 127.55, 127.08, 126.10, 120.34, 118.70, 111.14, 110.52, 56.13, 56.10.

4-(quinolin-2-yl)aniline (3aj)²: The title compound was prepared according to the general procedure and purified by flash column chromatography to give yellow solid, 209.4 mg, 95 % yield. 3aj NH₂

¹H NMR (600 MHz, CDCl₃) δ 8.12 (dd, J = 8.5, 5.6 Hz, 2H),

8.02 (d, J = 8.5 Hz, 2H), 7.78 (dd, J = 15.2, 8.4 Hz, 2H), 7.70 – 7.65 (m, 1H), 7.46 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 8.6 Hz, 2H), 3.87 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 157.32, 148.40, 147.97, 136.58, 129.95, 129.56, 129.48, 128.92, 127.51, 126.90, 125.70, 118.46, 115.23.

2-(4-(methylthio)phenyl)quinoline (3ak)⁵: The title compound was prepared according to the general procedure and purified by flash column chromatography to give yellow solid, 207.6 mg, 83 % 3ak SMe yield. ¹H NMR (400 MHz, CDCl₃) δ 8.20 – 8.08 (m, 4H),

7.86 - 7.77 (m, 2H), 7.71 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.50 (t, J = 7.3 Hz, 1H), 7.38(d, J = 8.5 Hz, 2H), 2.53 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 156.73, 148.37, 140.55, 136.90, 136.31, 129.81, 129.71, 127.95, 127.57, 127.24, 126.52, 126.31, 118.69, 15.63. 2-(4-chlorophenyl)quinoline (3al)¹: The title compound was prepared according to the

general procedure and purified by flash column chromatography to give white solid, 225.4 mg, 94% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 1H), 8.16 (d,

J = 8.4 Hz, 1H), 8.11 (d, J = 7.6 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.73 (t, J = 7.5 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 7.49 (d, J = 7.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 156.13, 148.35, 138.16, 137.12, 135.69, 129.99, 129.82, 129.15, 128.96, 127.62, 127.35, 126.65, 118.70.

2-(3-chlorophenyl)quinoline (3am)¹: The title compound was prepared according to

the general procedure and purified by flash column chromatography to give white solid, 200.4 mg, 84% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.24 (d, J = 8.6 Hz, 1H), 8.21 –

8.15 (m, 2H), 8.03 (d, J = 6.8 Hz, 1H), 7.84 (dd, J = 8.4, 4.3 Hz, 2H), 7.75 (t, J = 7.7 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.45 (q, J = 8.1 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 155.85, 148.33, 141.54, 137.15, 135.08, 130.17, 130.01, 129.90, 129.43, 127.84, 127.61, 127.48, 126.78, 125.72, 118.80.


2-(2-chlorophenyl)quinoline (3an)²: The title compound was prepared according to the general procedure and purified by flash column CI chromatography to give white solid, 221 mg, 92% yield. ¹H NMR 3an $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.20 (t, J = 9.4 \text{ Hz}, 2\text{H}), 7.87 (d, J = 8.1 \text{ Hz},$ 1H), 7.80 – 7.67 (m, 3H), 7.57 (t, J = 7.2 Hz, 1H), 7.51 (dd, J = 7.5, 1.8 Hz, 1H), 7.44 -7.34 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 157.53, 148.18, 139.76, 135.80, 132.48, 131.81, 130.21, 129.99, 129.81, 129.78, 127.68, 127.29, 127.25, 126.90, 122.89.

2-(4-bromophenyl)quinoline $(3ao)^1$: The title compound was prepared according to the general procedure and purified by flash column chromatography to give white solid, 268.8 mg, 95% yield. ¹H 3ao

Br

NMR (600 MHz, CDCl₃) δ 8.21 (d, *J* = 8.6 Hz, 1H), 8.15 (d, *J* = 8.5 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 2H), 7.82 (dd, *J* = 8.4, 3.5 Hz, 2H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.69 – 7.62 (m, 2H), 7.53 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 156.17, 148.37, 138.62, 137.12, 132.11, 129.99, 129.84, 129.23, 127.63, 127.38, 126.66, 124.07, 118.63.

2-(4-iodophenyl)quinoline (3ap)¹: The title compound was prepared according to the

general procedure and purified by flash column chromatography to give white solid, 306.7 mg, 93% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 8.5 Hz, 1H), 8.15 (d, *J*

= 8.5 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 2H), 7.83 (dd, *J* = 20.6, 8.1 Hz, 4H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 156.26, 148.36, 139.20, 138.09, 137.10, 129.99, 129.85, 129.37, 127.62, 127.42, 126.67, 118.57, 96.02.

2-(4-(trifluoromethyl)phenyl)quinoline (3aq)²: The title compound was prepared

according to the general procedure and purified by flash column chromatography to give white solid, 269.5 mg, 99% yield. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.55. ¹H NMR (400

MHz, CDCl₃) δ 8.26 (dd, *J* = 13.3, 8.5 Hz, 3H), 8.18 (d, *J* = 8.5 Hz, 1H), 7.90 – 7.81 (m, 2H), 7.79 – 7.72 (m, 3H), 7.56 (t, *J* = 7.5 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 155.80, 148.35, 143.02, 137.33, 131.25 (q, *J*=33.2 Hz), 130.17, 129.95, 128.00, 127.67, 127.58, 127.02, 125.89 (q, *J*=4.5 Hz), 124.35 (q, *J* = 273.3 Hz), 118.93.

2-([1,1'-biphenyl]-4-yl)quinoline (3ar)⁶: The title compound was prepared according to the general procedure and purified by flash column chromatography to give white solid, 255.7 mg, 91% yield.
¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.5 Hz, 2H), 8.20 (dd, J = 8.5, 5.5 Hz, 2H), 7.90 (d, J = 8.7 Hz, 1H),

7.81 (d, *J* = 8.2 Hz, 1H), 7.78 – 7.70 (m, 3H), 7.67 (dd, *J* = 8.2, 1.3 Hz, 2H), 7.55 – 7.43 (m, 3H), 7.37 (t, *J* = 7.3 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 157.00, 148.42, 142.23, 140.70, 138.59, 136.97, 129.86, 129.82, 128.98, 128.12, 127.73, 127.69, 127.61, 127.35, 127.28, 126.44, 119.02.

2-(naphthalen-2-vl)quinoline (3as)⁵: The title compound was prepared according to

the general procedure and purified by flash column chromatography to give white solid, 183.8 mg, 72% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.37 (dd, J = 8.7,

1.9 Hz, 1H), 8.25 (dd, J = 12.4, 8.6 Hz, 2H), 8.02 (dd, J = 16.6, 8.6 Hz, 3H), 7.93 – 7.82 (m, 2H), 7.79 – 7.72 (m, 1H), 7.58 – 7.49 (m, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.31, 148.49, 137.07, 136.99, 134.01, 133.65, 129.90, 129.85, 128.97, 128.73, 127.87, 127.64, 127.38, 127.31, 126.86, 126.50, 126.48, 125.21, 119.32.

2-(thiophen-2-vl)quinoline (3at)¹: The title compound was prepared according to the general procedure and purified by flash column chromatography to give light gray solid, 187.7 mg, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (t, J = 9.3 Hz, 2H), 7.81 – 7.65 (m, 4H), 7.50 – 7.43

(m, 2H), 7.15 (dd, J = 5.1, 3.7 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 152.43, 148.19, 145.46, 136.76, 129.95, 129.35, 128.72, 128.21, 127.60, 127.30, 126.23, 126.02, 117.78.

5,6-dihydrobenzo[*c*]acridine (3au)¹: The title compound was prepared according to


N

3at

general procedure and purified by flash column the chromatography to give white solid, 161.4 mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 7.5 Hz, 1H), 8.13 (d, J =

8.5 Hz, 1H), 7.91 (s, 1H), 7.73 (d, J = 7.3 Hz, 1H), 7.64 (ddd, J = 8.5, 6.9, 1.5 Hz, 1H), 7.50 – 7.39 (m, 2H), 7.36 (td, *J* = 7.4, 1.6 Hz, 1H), 7.27 (d, *J* = 7.4 Hz, 1H), 3.12 (dd, *J* = 8.4, 5.3 Hz, 2H), 3.01 (dd, J = 8.5, 5.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 153.51, 147.74, 139.54, 134.82, 133.84, 130.71, 129.81, 129.52, 128.78, 128.07, 128.00, 127.45, 127.05, 126.19, 28.95, 28.52.

3-methyl-2-(p-tolyl)quinoline (**3av**)¹: The title compound was prepared according to

the general procedure and purified by flash column chromatography to give white solid, 198.8 mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 8.5 Hz, 1H), 7.98 (s,

1H), 7.75 (d, J = 8.0 Hz, 1H), 7.64 (t, J = 6.9 Hz, 1H), 7.49 (d, J = 8.1 Hz, 3H), 7.29 (d, J = 7.8 Hz, 2H), 2.46 (s, 3H), 2.42 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 160.69, 146.76, 138.13, 138.10, 136.82, 129.42, 129.38, 129.09, 128.93, 128.80, 127.66, 126.80, 126.42, 21.46, 20.84.

2-pentylquinoline $(3ax)^{1}$: The title compound was prepared according to the general procedure and purified by flash column chromatography to give colorless oil, 102.8 mg, 52% yield. ¹H NMR (400 MHz, 3ax CDCl₃) δ 8.05 (dd, *J* = 8.6, 5.1 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 1H), 7.70 - 7.64 (m, 1H), 7.50 - 7.44 (m, 1H), 7.31 - 7.26 (m, 1H), 2.97 (dd, J = 8.7, 7.2 Hz, 2H), 1.81 (dd, J = 11.0, 4.8 Hz, 2H), 1.45 – 1.31 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.24, 147.97, 136.31, 129.43, 128.90, 127.58,

126.82, 125.74, 121.48, 39.43, 31.87, 29.88, 22.68, 14.13.

1,2,3,4-tetrahydroacridine $(3ay)^{1}$: The title compound was prepared according to the general procedure and purified by flash column chromatography to 3ay

give white solid, 126.8 mg, 69% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.5 Hz, 1H), 7.74 (s, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.59 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 3.11 (t, J = 6.7 Hz, 2H), 2.93 (t, J =

6.6 Hz, 2H), 2.00 – 1.94 (m, 2H), 1.90 – 1.84 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 159.32, 146.65, 134.99, 130.98, 128.51, 128.31, 127.24, 126.93, 125.55, 33.62, 29.28, 23.27, 22.95.

2-cyclopropylquinoline $(3az)^1$: The title compound was prepared according to the

general procedure and purified by flash column chromatography to give colorless oil, 92.1 mg, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (t, J = 8.8 Hz, 2H), 7.73 (dd, J = 8.1, 1.4 Hz, 1H), 7.64 (ddd,

J = 8.4, 6.9, 1.5 Hz, 1H), 7.42 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 2.25 (tt, J = 8.2, 4.9 Hz, 1H), 1.16 (tt, J = 5.5, 2.5 Hz, 2H), 1.10 (tdd, J = 7.6, 5.2, 2.6 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 163.56, 148.02, 136.04, 129.45, 128.71, 127.58, 126.86, 125.34, 119.40, 18.20, 10.43.

2,4-diphenylquinoline $(3ba)^{1}$: The title compound was prepared according to the general procedure and purified by flash column chromatography to give white solid, 186.6 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 7.7 Hz, 2H), 7.90 (d, J = 8.3 Hz, 1H), 7.82 (s, 1H), 7.75 – 7.69 (m, 1H), 7.58 – 7.53 (m, 4H), 7.51 (d, J = 7.6 Hz, 3H), 7.49 – 7.43 (m, 2H). ¹³C NMR

(151 MHz, CDCl₃) δ 157.03, 149.33, 148.93, 139.78, 138.54, 130.25, 129.70, 129.67, 129.49, 128.98, 128.73, 128.54, 127.73, 126.48, 125.91, 125.78, 119.51.

4-methyl-2-phenylquinoline $(3ca)^3$: The title compound was prepared according to the general procedure and purified by flash column chromatography to give white solid, 202 mg, 92% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 7.6 Hz, 2H), 7.98 (d, J = 8.3 Hz, 1H), 7.70 (d, J = 7.4 Hz, 2H), 7.56 – 7.49 (m, 3H), 7.45 (t, J = 7.3 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 157.12, 148.05,

145.16, 139.73, 130.26, 129.54, 129.39, 128.91, 127.71, 127.36, 126.21, 123.74, 119.92, 19.15.

8-methyl-2-phenylquinoline $(3da)^3$: The title compound was prepared according to the general procedure and purified by flash column chromatography to give colorless oil, 166.4 mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.30 – 8.21 (m, 2H), 8.12 (d, *J* = 8.5

Hz, 1H), 7.85 (d, *J* = 8.5 Hz, 1H), 7.62 (d, *J* = 8.2 Hz, 1H), 7.58 – 7.47 (m, 3H), 7.47 – 7.34 (m, 2H), 2.89 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.63, 147.29, 139.98, 137.79, 137.04, 129.81, 129.35, 128.89, 127.60, 127.22, 126.14, 125.51, 118.29, 18.03. **7-methyl-2-phenylquinoline** (**3ea**)⁷: The title compound was prepared according to the

general procedure and purified by flash column chromatography to give white solid, 101.2 mg, 92% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 7.9 Hz, 3H), 7.96 (s,

1H), 7.79 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.2 Hz, 1H), 7.51 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ

157.43, 148.64, 140.04, 139.96, 136.56, 129.33, 128.93, 128.90, 128.68, 127.66, 127.22, 125.37, 118.32, 22.04.

6-bromo-2-phenylquinoline (3fa)³: The title compound was prepared according to the


3fa

Br∙

general procedure and purified by flash column chromatography to give white solid, 249.7 mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.19 – 8.12 (m, 3H), 8.06 (d,

J = 9.0 Hz, 1H), 7.99 (d, J = 2.2 Hz, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.79 (dd, J = 9.0, 2.2 Hz, 1H), 7.51 (dt, J = 22.4, 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.79, 146.99, 139.32, 135.88, 133.24, 131.59, 129.75, 129.63, 129.05, 128.39, 127.67, 120.19, 119.89.

2,4-diphenyl-1*H*-pyrrole (5ga)⁸: The title compound was prepared according to the

general procedure and purified by flash column chromatography to give light gray solid, 67 mg, 31% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.43 (s, 1H), 7.57 (d, *J* = 7.1 Hz, 2H), 7.51 (d, *J* = 8.2 Hz, 2H), 7.37 (dt, *J* = 15.3, 7.7 Hz, 4H),

7.24 – 7.17 (m, 2H), 7.13 (s, 1H), 6.83 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 135.63, 133.20, 132.59, 129.09, 128.81, 126.72, 126.63, 125.89, 125.31, 123.98, 115.73, 104.09.

6. NMR Spectra

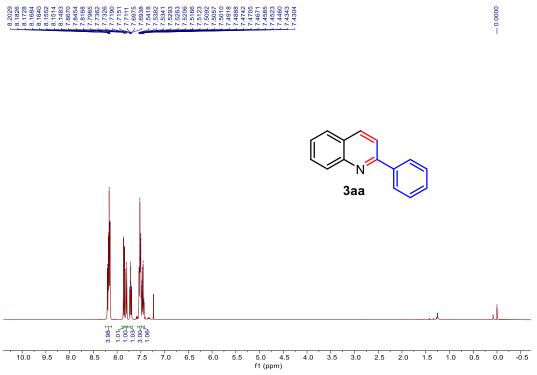


Figure S3. ¹H NMR of 3aa in CDCl₃.

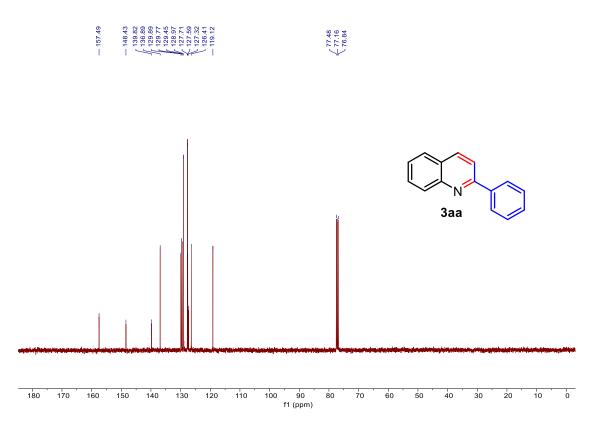


Figure S4. ¹³C NMR of 3aa in CDCl₃.

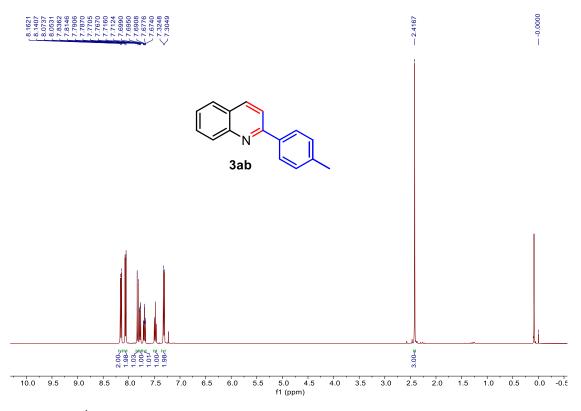


Figure S5. ¹H NMR of 3ab in CDCl₃.

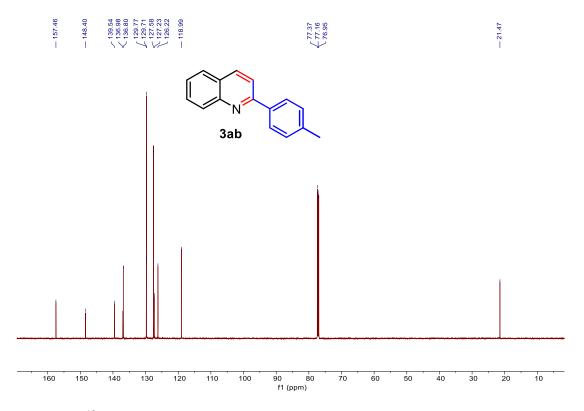
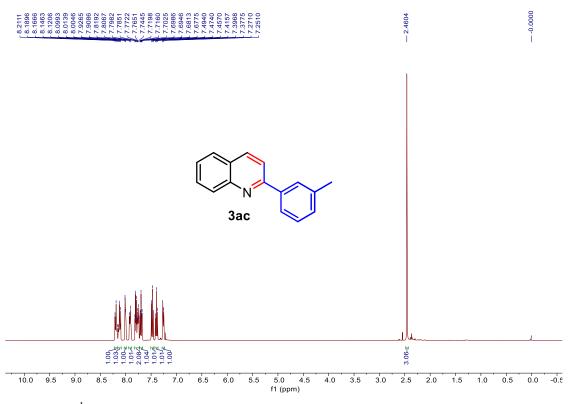



Figure S6. ¹³C NMR of 3ab in CDCl₃.

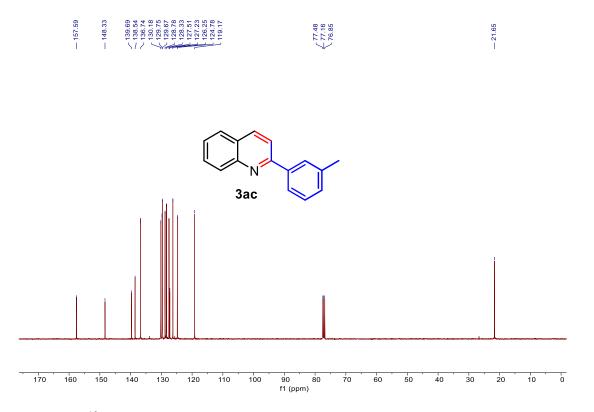


Figure S8. ¹³C NMR of 3ac in CDCl₃.

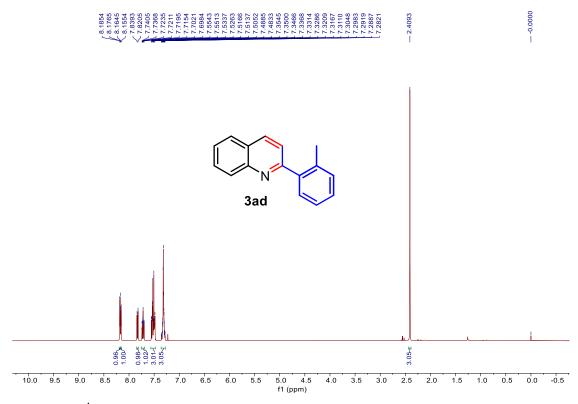


Figure S9. ¹H NMR of 3ad in CDCl₃.

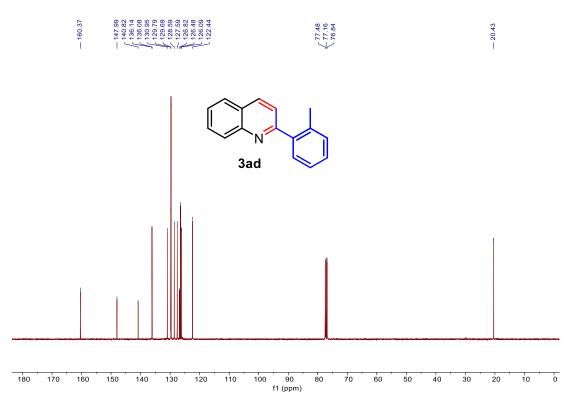


Figure S10. ¹³C NMR of 3ad in CDCl₃.

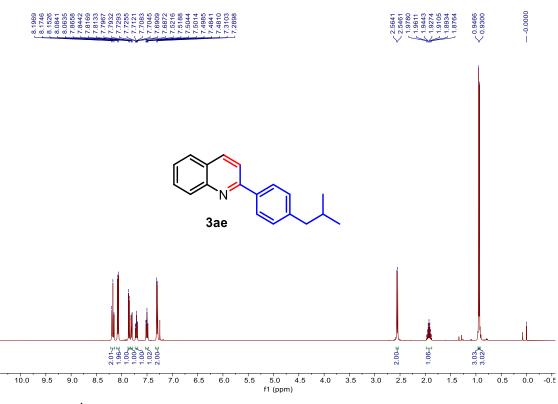


Figure S11. ¹H NMR of 3ae in CDCl₃.

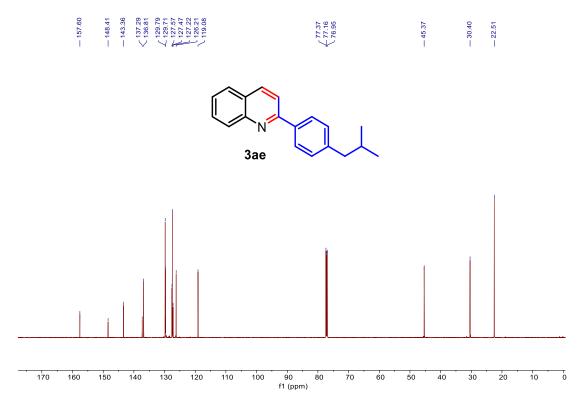


Figure S12. ¹³C NMR of 3ae in CDCl₃.

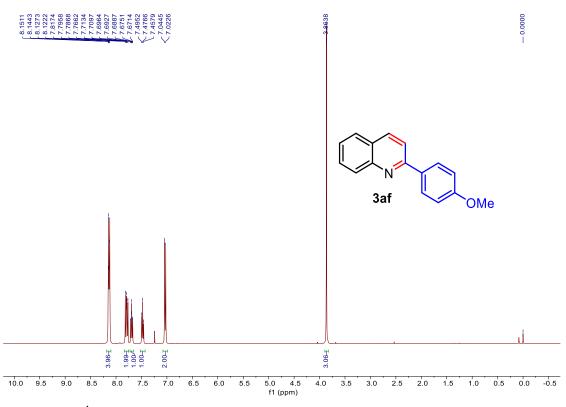


Figure S13. ¹H NMR of 3af in CDCl₃.

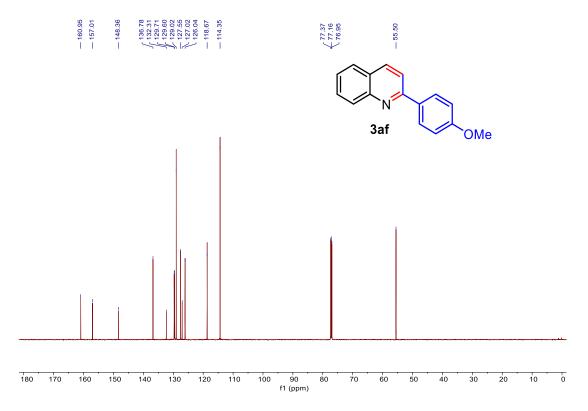


Figure S14. ¹³C NMR of **3af** in CDCl₃.

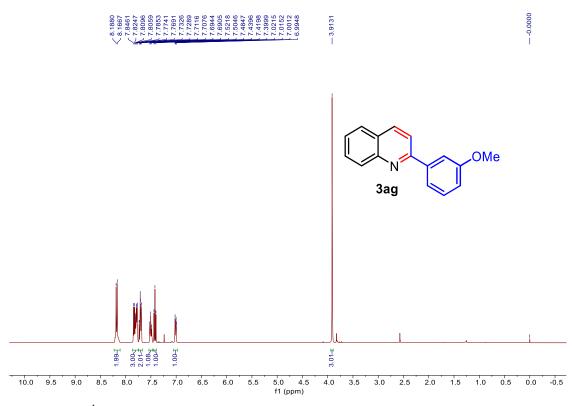


Figure S15. ¹H NMR of 3ag in CDCl₃.

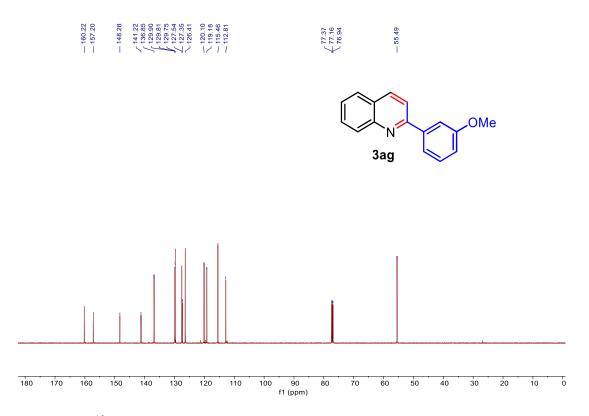


Figure S16. ¹³C NMR of 3ag in CDCl₃.

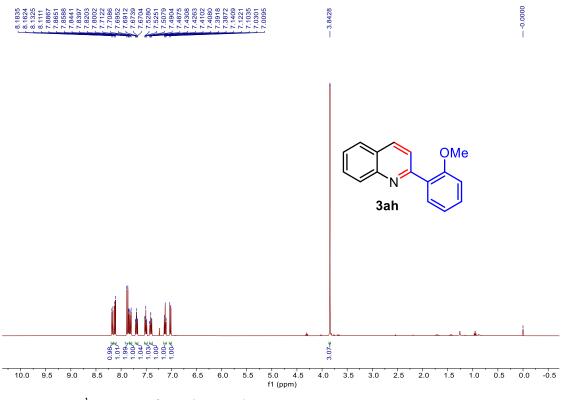


Figure S17. ¹H NMR of 3ah in CDCl₃.

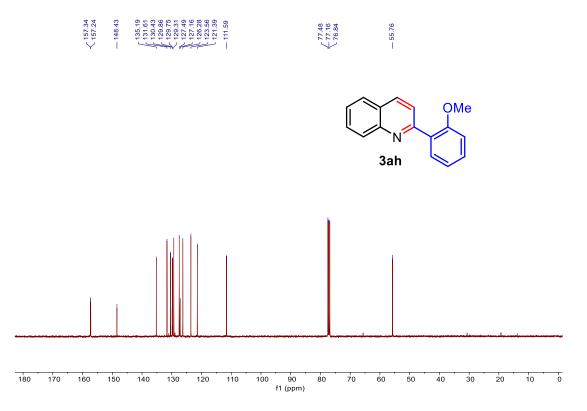


Figure S18. ¹³C NMR of 3ah in CDCl₃.

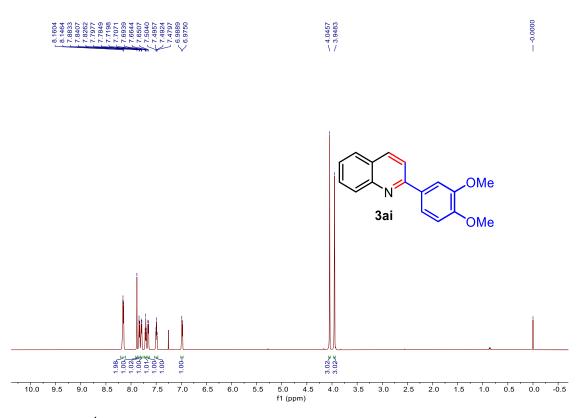


Figure S17. ¹H NMR of 3ai in CDCl₃.

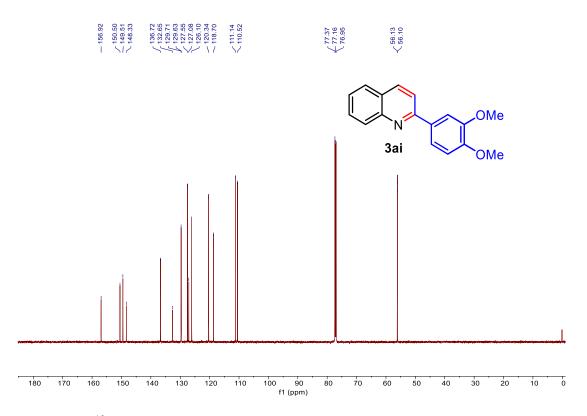


Figure S18. ¹³C NMR of 3ai in CDCl₃.

Figure S19. ¹H NMR of 3aj in CDCl₃.

57. 47. 36.	129.95 129.48 129.48 128.92 127.51 126.90 126.90 115.70 115.72 115.23	77.37 77.16 76.95
-------------------	--	-------------------------

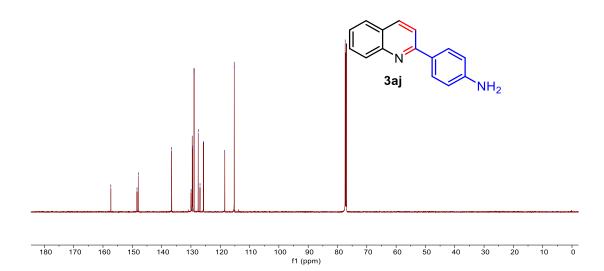


Figure S20. ¹³C NMR of 3aj in CDCl₃.

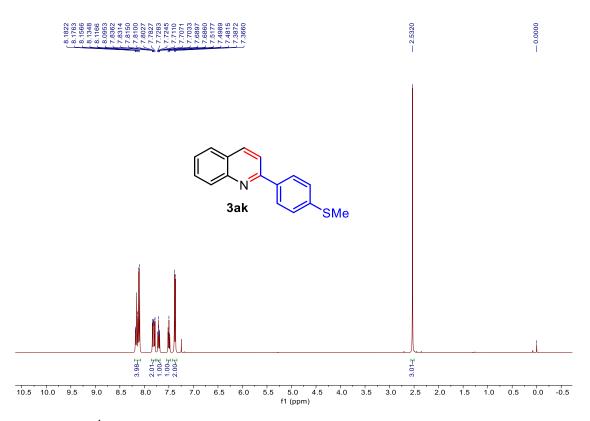


Figure S21. ¹H NMR of 3ak in CDCl₃.

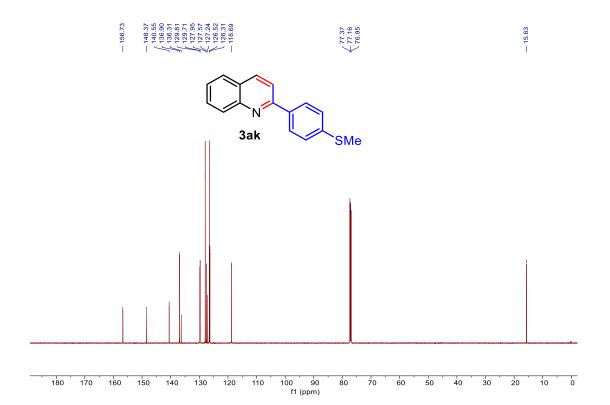


Figure S22. ¹³C NMR of 3ak in CDCl₃.

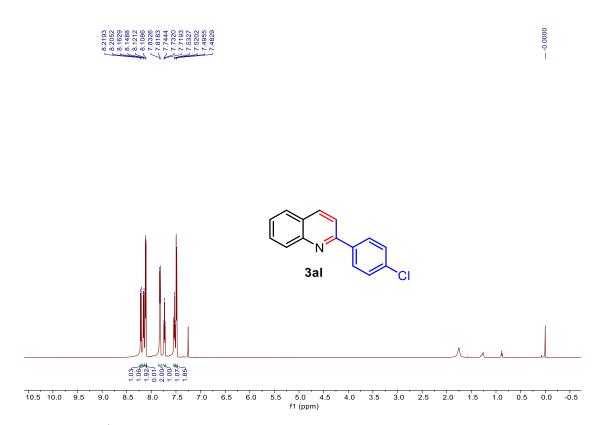


Figure S23. ¹H NMR of 3al in CDCl₃.

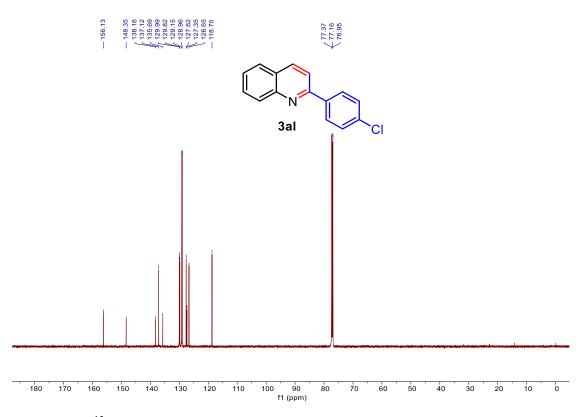


Figure S24. ¹³C NMR of 3al in CDCl₃.

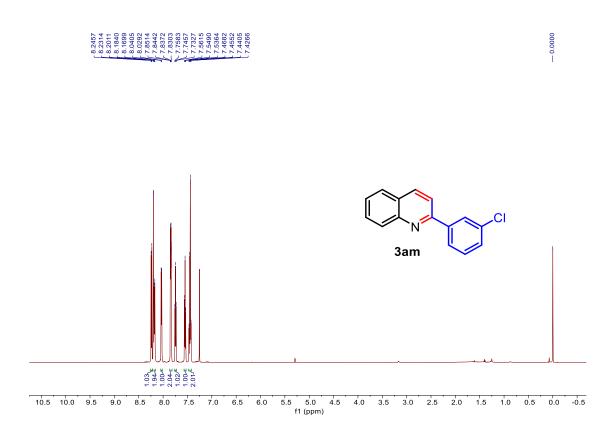


Figure S25. ¹H NMR of 3am in CDCl₃.

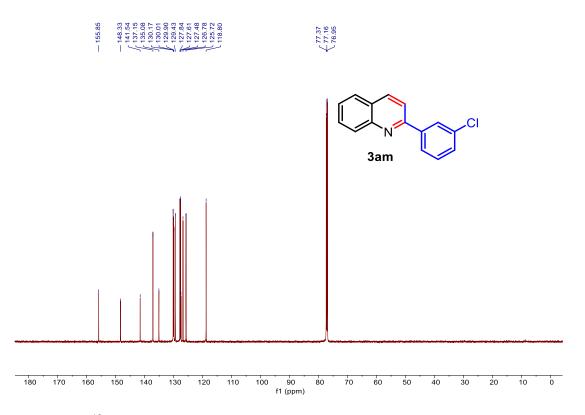


Figure S26. ¹³C NMR of 3am in CDCl₃.

Figure S27. ¹H NMR of 3an in CDCl₃.

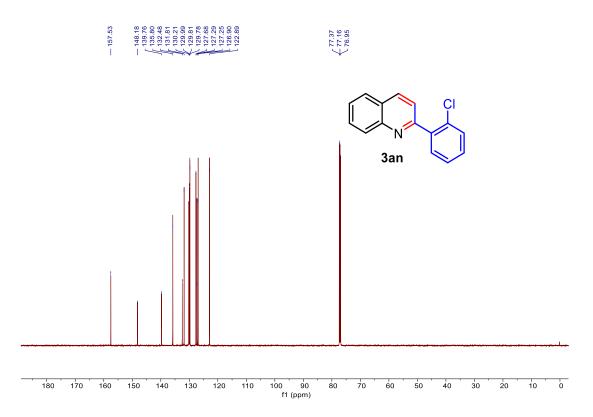


Figure S28. ¹³C NMR of 3an in CDCl₃.

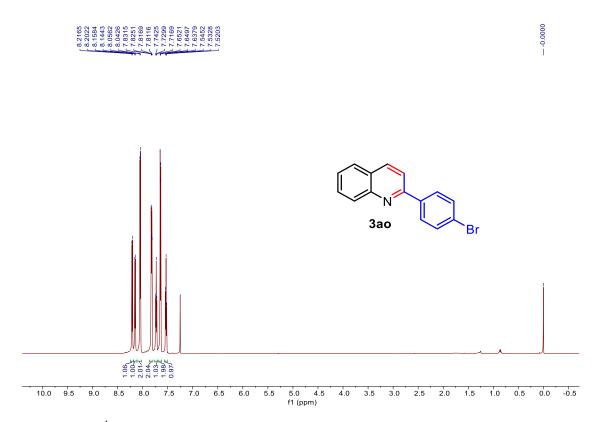


Figure S29. ¹H NMR of 3ao in CDCl₃.

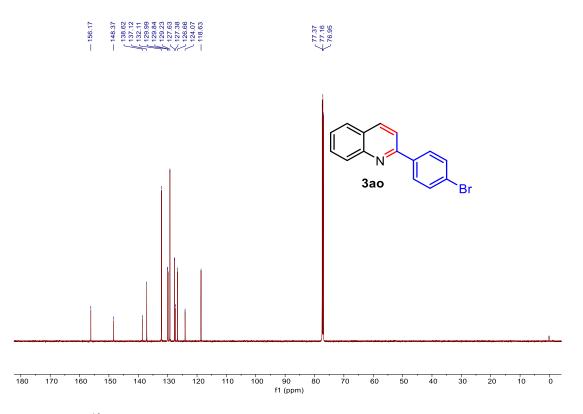


Figure S30. ¹³C NMR of 3ao in CDCl₃.

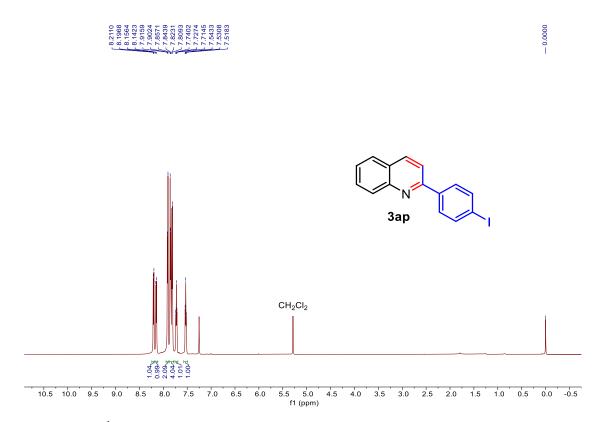


Figure S31. ¹H NMR of 3ap in CDCl₃.

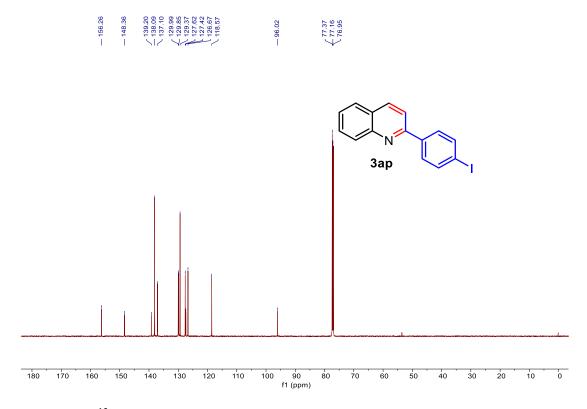
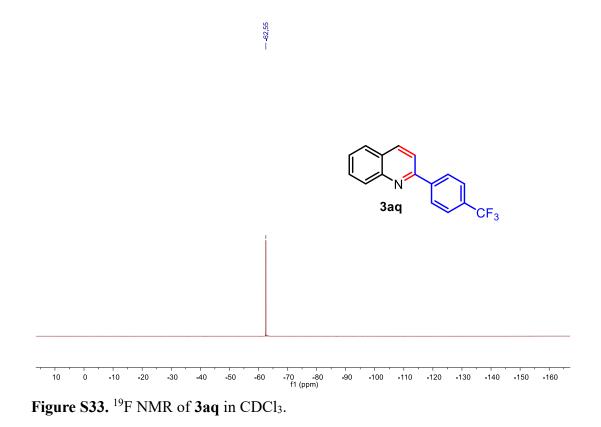



Figure S32. ¹³C NMR of 3ap in CDCl₃.

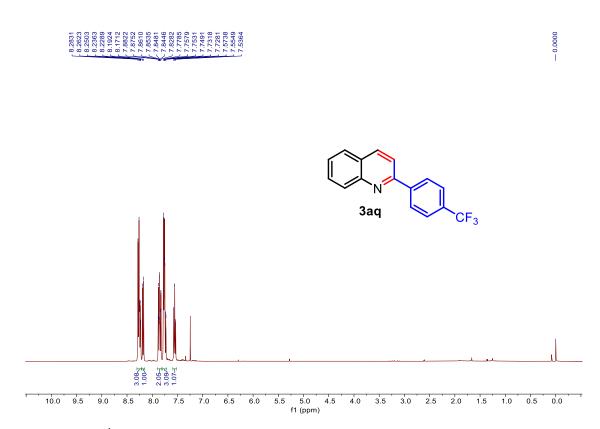


Figure S34. ¹H NMR of 3aq in CDCl₃.

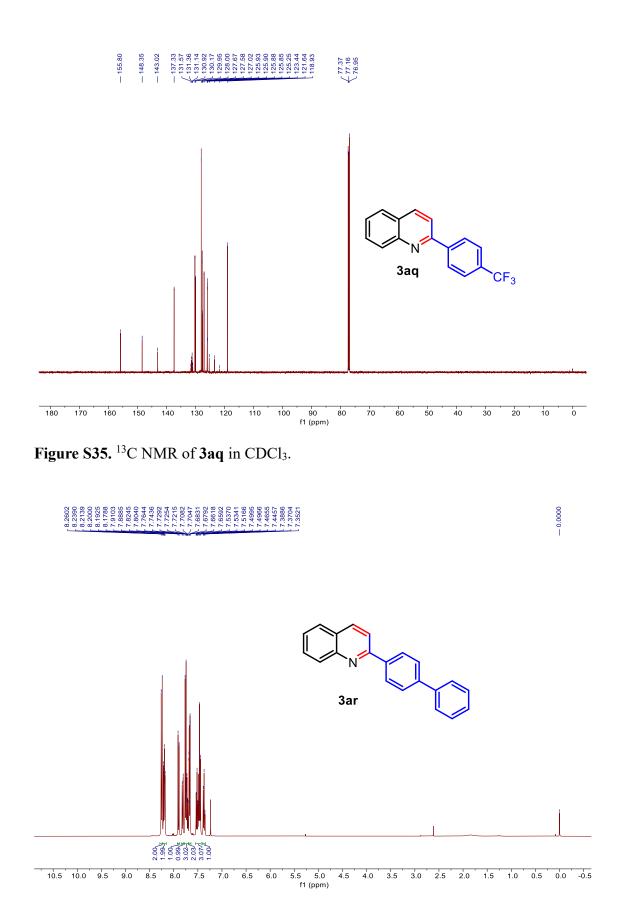


Figure S36. ¹H NMR of 3ar in CDCl₃.

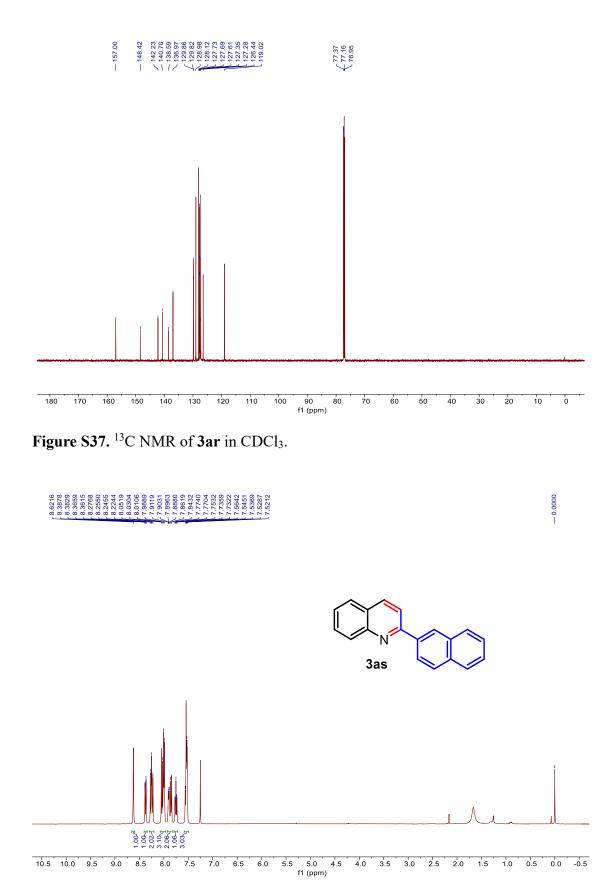


Figure S38. ¹H NMR of 3as in CDCl₃.

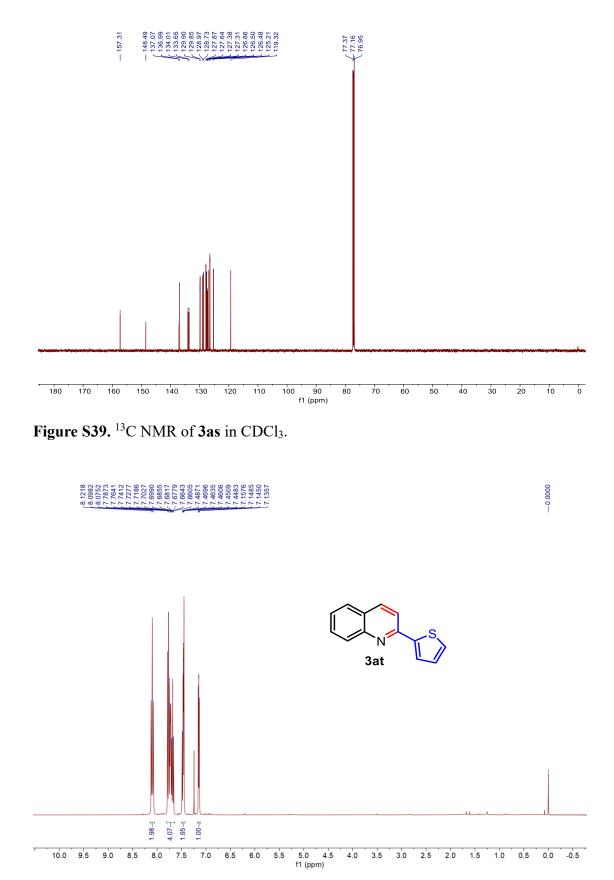


Figure S40. ¹H NMR of 3at in CDCl₃.

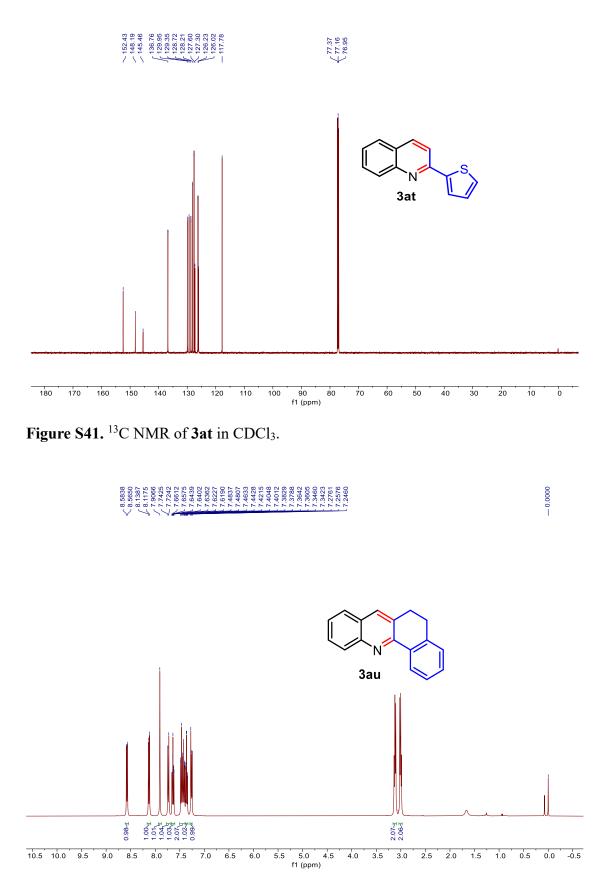
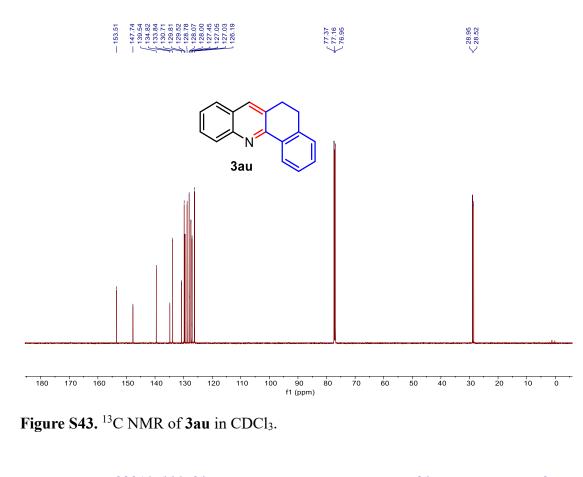



Figure S42. ¹H NMR of 3au in CDCl₃.

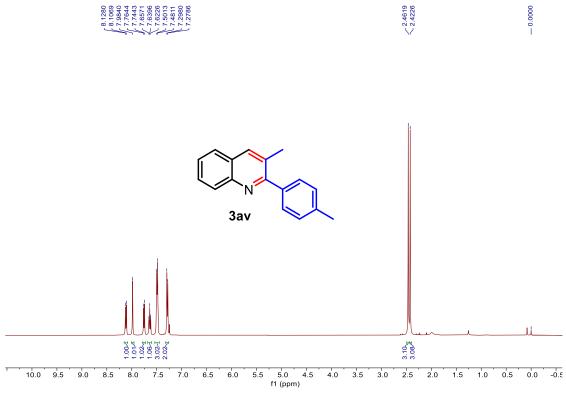


Figure S44. ¹H NMR of 3av in CDCl₃.

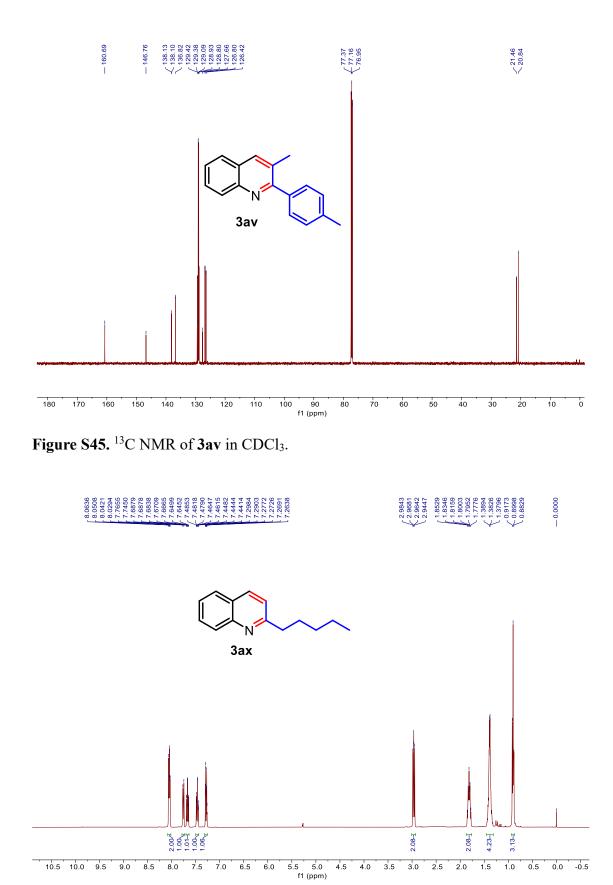


Figure S46. ¹H NMR of 3ax in CDCl₃.

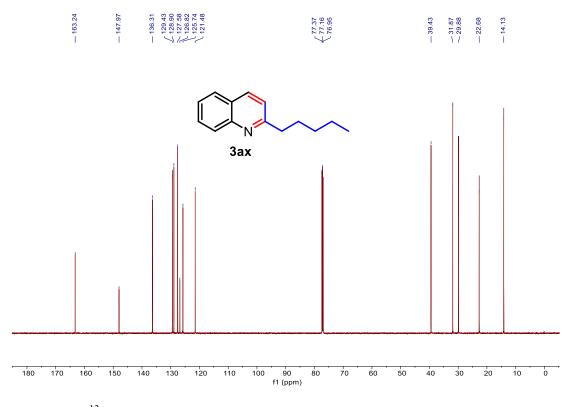


Figure S47. ¹³C NMR of 3ax in CDCl₃.

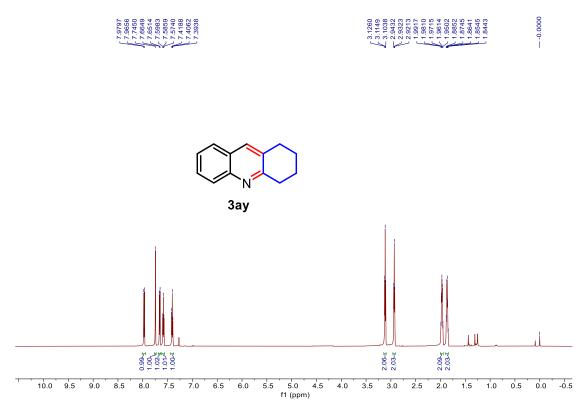


Figure S48. ¹H NMR of 3ay in CDCl₃.

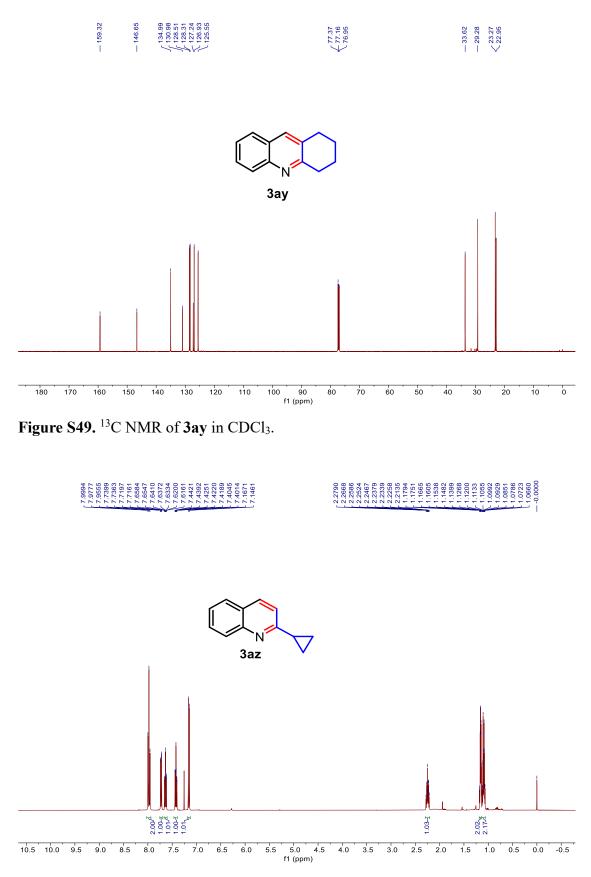
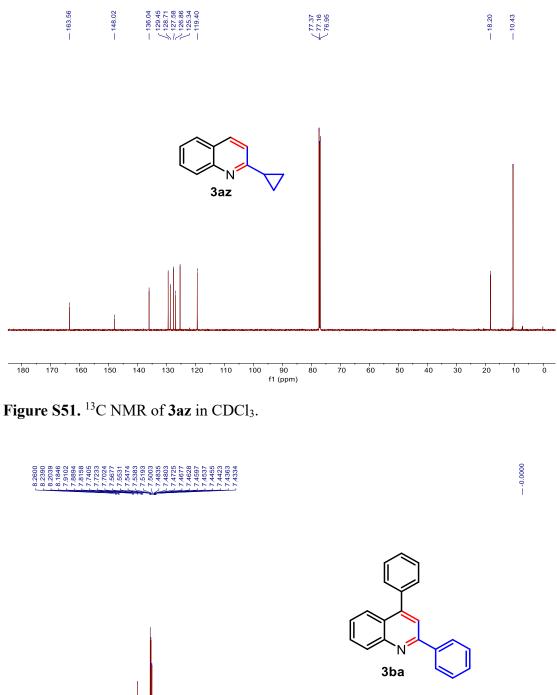



Figure S50. ¹H NMR of 3az in CDCl₃.

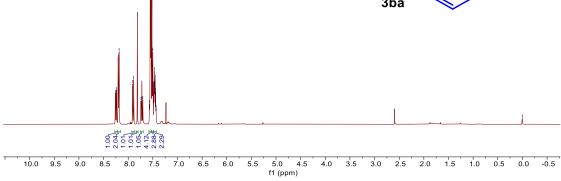


Figure S52. ¹H NMR of 3ba in CDCl₃.

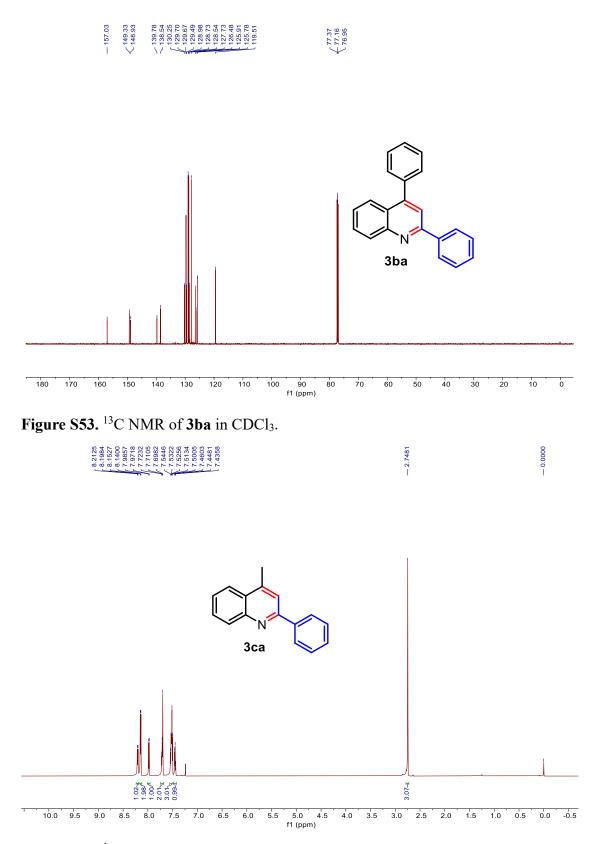


Figure S54. ¹H NMR of 3ca in CDCl₃.

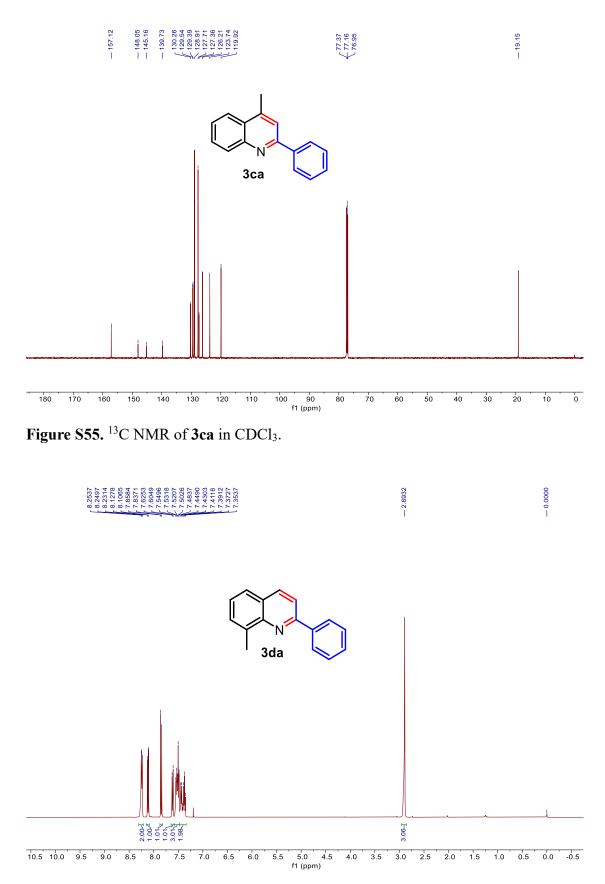
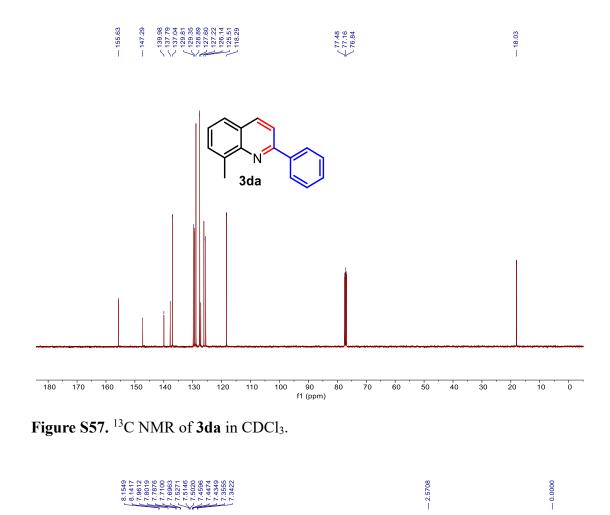



Figure S56. ¹H NMR of 3da in CDCl₃.

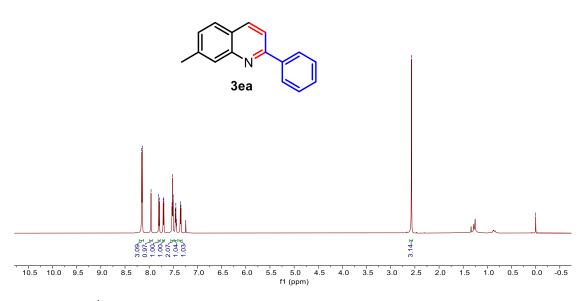


Figure S58. ¹H NMR of 3ea in CDCl₃.

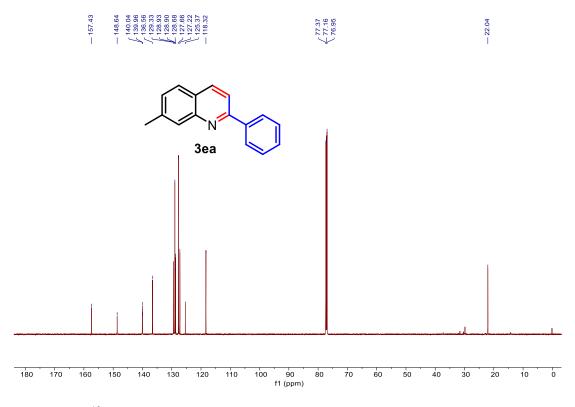


Figure S59. ¹³C NMR of 3ea in CDCl₃.

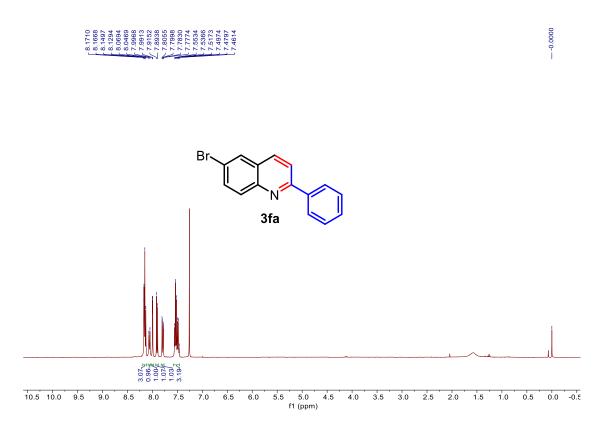


Figure S60. ¹H NMR of 3fa in CDCl₃.

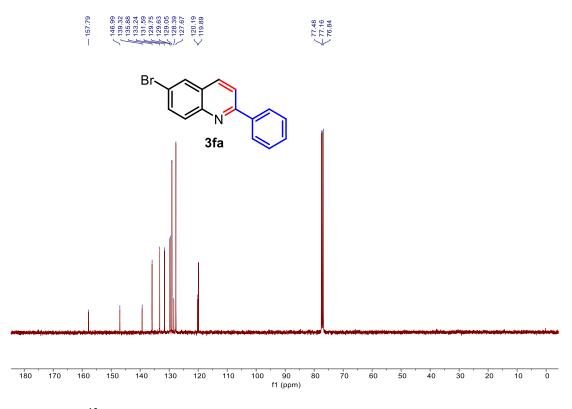


Figure S61. ¹³C NMR of 3fa in CDCl₃.

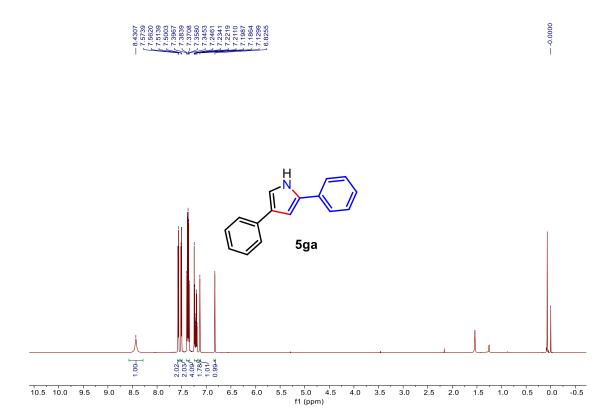


Figure S62. ¹H NMR of 5ga in CDCl₃.

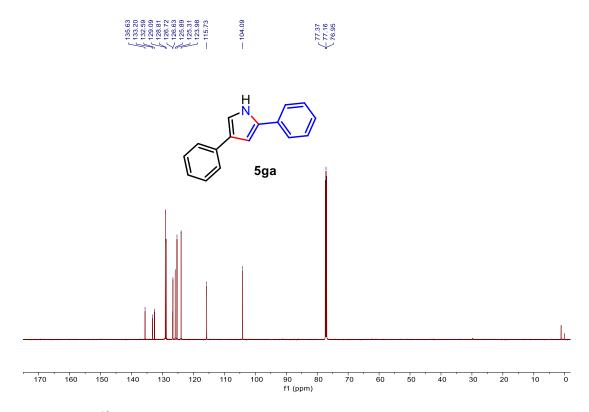


Figure S63. ¹³C NMR of 5ga in CDCl₃.

7. References

- 1. Maji, S. Gupta, M. Maji and S. Kundu, J. Org. Chem., 2022, 87, 8351-8367.
- 2. S. Parua, R. Sikari, S. Sinha, S. Das, G. Chakraborty and N. D. Paul, *Org. Biomol. Chem.*, 2018, **16**, 274-284.
- 3. Y. Y. Liu, Y. Wei, Z. H. Huang and Y. Liu, Org. Biomol. Chem., 2021, **19**, 659-666.
- 4. M. Nallagangula, C. Sujatha, V. T. Bhat and K. Namitharan, *Chem. Commun.*, 2019, **55**, 8490-8493.
- 5. Y. Gao, S. Yang, Y. Huo, Q. Chen, X. Li and X.-Q. Hu, ACS Catal., 2021, 11, 7772-7779.
- J. X. Xu, N. L. Pan, J. X. Chen and J. W. Zhao, J. Org. Chem., 2021, 86, 10747-10754.
- 7. J. Baek, T. Si, H. Y. Kim and K. Oh, Org. Lett., 2022, 24, 4982-4986.
- 8. G. Cheng, W. Lv and L. Xue, Green Chem., 2018, 20, 4414-4417.