Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary information

C-H functionalization of aromatic amines for azidation catalyzed by Betti base coordinated copper(II) complexes under ultrasonication

Premkumar G¹, Toka Swu^{1*}, Richa Gupta², Kothandaraman R²

¹Department of Chemistry, Pondicherry University, Puducherry-605014, India.

²Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India

*Corresponding author - tokaswu.che@pondiuni.edu.in

Table of contents

Sections	Page no.
Table S1 Crystallographic data of complex C4	2-3
Fig S1. DFT optimized geometry of complex C4	3
Table S2 Selected bond lengths [Å] for complexes C1, C2, C3 and C5	3
Table S3 Selected bond angles [°] for complex C1, C2, C3 and C5	3
Characterization data for the Ligands and complexes	4-7
Fig S2. Comparison of experimental and theoretical IR spectrum of complexes	7-8
Fig S3. UV-Visible spectrum of ligands and complexes	8-9
Fig S4. TGA plot of complexes	9-10
Table S4 Calculated and experimental weight loss percentage for complexesC1-C5	10
Fig S5-S9. ESI-MS spectrum of complexes	11-12
Fig S10. FT-IR spectrum of 2-azidoaniline (2a)	13
Characterization data for the products	13-25
Fig S11-S108. Copies of ¹ H and ¹³ C NMR Spectra of the products	27-75
Fig S109-131. ESI-MS spectrum of new compounds	76-87
Fig S132. NMR spectrum of the crude mixture after 1h of reaction time	87
Fig S133. ESI-MS spectrum of the TEMPO-azide adduct	88
Fig S134. ESI-MS spectrum of the hydroquinone-azide adduct	88
Fig S135. NMR time-course experiment	89
Fig S136-139. NMR spectrum of the crude mixture at different time points	90-91
Table S5 Grid box parameters for the docking study	92
Table S6 Results of molecular docking of triazoles against SARS-CoV-2Omicron P132H	92-93
References	93

 Table S1 Crystallographic data of complex C4

Parameters	Complex C4
Empirical formula	$C_{46}H_{48}CuN_2O_2$
Formula weight	724.40
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	11.5553(6)
b/Å	9.9379(6)
c/Å	16.2405(11)
α/°	90
β/°	91.878(5)
γ/°	90
Volume/Å ³	1863.98(19)
Ζ	2
$\rho_{calc}g/cm^3$	1.291
μ/mm^{-1}	0.627
F(000)	766.0
Radiation	MoKa ($\lambda = 0.71073$)
20 range for data	7.302 to 60.58
collection/°	
Index ranges	$-15 \le h \le 13, -14 \le k$
	$\leq 13, -21 \leq 1 \leq 20$
Reflections collected	19542
Independent reflections	$4572 [R_{int} = 0.1143,$
	R _{sigma}
	= 0.0718]
Data/restraints/parameters	4572/0/232
Goodness-of-fit on F ²	1.073
Final R indexes $[I > = 2\sigma]$	$R_1 = 0.0863, WR_2 =$
(I)]	0.2150
Final R indexes [all data]	$R_1 = 0.1000, wR_2 =$

	0.2239
Largest diffraction	1.81/-0.88
peak/hole/e Å ⁻³	
CCDC number	2241114

Fig S1. DFT optimized geometry of complex C4 using B3LYP functional and basis set 6-31G(d,p) for C, H, N and O, LANL2DZ for Cu atom.

Table S2 Selected bond lengths [Å] of the optimized structures C1, C2, C3 and C5 obtained from DFT calculations

C1		C2		C3		C5			
Cu-O(1)	1.907	Cu-O(1)	1.912	Cu-O(1)	1.907	Cu-O(1)	1.908		
Cu-N(1)	2.070	Cu-N(1)	2.074	Cu-N(1)	2.070	Cu-N(1)	2.176		
Cu-O(2)	1.907	Cu-O(2)	1.912	Cu-O(2)	1.907	Cu-O(2)	1.908		
Cu-N(2)	2.069	Cu-N(2)	2.073	Cu-N(2)	2.070	Cu-N(2)	2.176		

Table S3 Selected bond angles [°] of the optimized structures **C1**, **C2**, **C3** and **C5** obtained from DFT calculations

C1		C2		C3		C5			
O(1)-Cu-N(1)	92.49	O(1)-Cu-N(1)	92.75	O(1)-Cu-N(1)	92.39	O(1)-Cu-N(1)	90.53		
O(2)-Cu-N(2)	92.48	O(2)-Cu-N(2)	92.75	O(2)-Cu-N(2)	92.39	O(2)-Cu-N(2)	90.54		
N(1)-Cu-O(2)	87.51	N(1)-Cu-O(2)	87.24	N(1)-Cu-O(2)	87.60	N(1)-Cu-O(2)	89.47		
O(1)-Cu-N(2)	87.51	O(1)-Cu-N(2)	87.24	O(1)-Cu-N(2)	87.60	O(1)-Cu-N(2)	89.45		
O(1)-Cu-O(2)	179.99	O(1)-Cu-O(2)	179.99	O(1)-Cu-O(2)	179.99	O(1)-Cu-O(2)	179.96		
N(1)-Cu-N(2)	179.99	N(1)-Cu-N(2)	179.99	N(1)-Cu-N(2)	179.99	N(1)-Cu-N(2)	179.96		

Characterization data for the Ligands and complexes:

Ligand L1:

Reaction of benzaldehyde (1 equiv) and aniline (1.2 equiv), 2-naphthol (1mmol) and N,Ndimethylethanolamine (DMEA) (7.5 mol%) afforded ligand L1 as white solid. Yield, 90%. ¹H NMR (400 MHz, CDCl₃) δ 11.54 (s, 1H), 7.84 – 7.79 (m, 2H), 7.78 (d, J = 8.9 Hz, 1H), 7.50 (d, 2H), 7.44 – 7.29 (m, 5H), 7.21 – 7.13 (m, 3H), 6.95 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 7.6 Hz, 2H), 6.21 (s, 1H), 4.19 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.31, 146.85, 141.12, 131.62, 130.14, 129.60, 129.54, 129.25, 129.15, 128.71, 128.15, 126.92, 122.98, 121.99, 121.55, 120.16, 116.44, 113.89, 62.89. Selected FT-IR frequencies (KBr, cm⁻¹): 3348 (N-H stretching), 2886 (O-H stretching). UV (nm): 236, 280, 335 nm. Anal. calcd for C₂₃H₁₉NO: C 84.89, H 5.89, N 4.30, found: C 84.53, H 5.33, N 4.95. ESI-MS: for C₂₃H₁₉NO [M + H]⁺ calculated m/z = 326.1539; found m/z = 326.1529.

Ligand L2:

Reaction of benzaldehyde (1 equiv) and o-toluidine (1.2 equiv), 2-naphthol (1mmol) and N,N-dimethylethanolamine (DMEA) (7.5 mol%) afforded ligand **L2** as white solid. Yield, 88%. ¹H NMR (400 MHz, CDCl₃) δ 11.41 (s, 1H), 7.83 (t, 2H), 7.77 (d, J = 8.9 Hz, 1H), 7.52 (d, J = 6.9 Hz, 2H), 7.46 – 7.30 (m, 5H), 7.16 (d, J = 8.8 Hz, 2H), 6.99 (t, J = 7.7 Hz, 1H), 6.89 (t, J = 7.4 Hz, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.26 (s, 1H), 4.08 (s, 1H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.34, 144.90, 141.27, 131.67, 130.45, 130.11, 129.59, 129.25, 129.17, 128.71, 128.13, 127.70, 126.96, 125.07, 122.99, 121.63, 121.50, 120.11, 114.50, 113.85, 62.32, 17.97. Selected FT-IR frequencies (KBr, cm⁻¹): 3364 (N-H stretching), 2935 (O-H stretching). UV (nm): 236, 280, 333 nm. Anal. calcd for C₂₄H₂₁NO: C 84.92, H 6.24, N 4.13, found: C 84.73, H 5.83, N 4.34. ESI-MS: for C₂₄H₂₁NO [M + H]⁺ calculated m/z = 340.1696; found m/z = 340.1690.

Ligand L3:

Reaction of benzaldehyde (1 equiv), 4-tert-butylaniline (1.2 equiv), 2-naphthol (1mmol) and N,N-dimethylethanolamine (DMEA) (7.5 mol%) afforded ligand L3 as white solid. Yield, 90%. ¹H NMR (400 MHz, CDCl₃) δ 11.70 (s, 1H), 7.80 – 7.71 (m, 3H), 7.47 (d, J = 6.9 Hz, 2H), 7.40 – 7.25 (m, 5H), 7.16 (t, J = 9.3 Hz, 3H), 6.72 (d, J = 8.6 Hz, 2H), 6.17 (s, 1H), 4.09 (s, 1H), 1.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.44, 144.92, 144.39, 141.28, 131.70,

130.09, 129.52, 129.25, 129.15, 128.65, 128.16, 126.89, 126.42, 122.93, 121.54, 120.19, 116.25, 114.08, 63.12, 34.24, 31.52. Selected FT-IR frequencies (KBr, cm⁻¹): 3354 (N-H stretching), 2961 (O-H stretching). UV (nm): 236, 280, 334 nm. Anal. calcd for $C_{27}H_{27}NO$: C 85.00, H 7.13, N 3.67, found: C 85.41, H 6.74, N 4.08. ESI-MS: for $C_{27}H_{27}NO$ [M + H]⁺ calculated m/z = 382.2165; found m/z = 382.2160.

Ligand L4:

Reaction of benzaldehyde (1 equiv), cyclohexylamine (1.2 equiv), 2-naphthol (1mmol) and N,N-dimethylethanolamine (DMEA) (7.5 mol%) afforded ligand L4 as white solid. Yield, 92%. ¹H NMR (400 MHz, CDCl₃) δ 7.70 (t, J = 7.8 Hz, 1H), 7.40 (d, J = 7.6 Hz, 0H), 7.35 – 7.27 (m, 0H), 7.24 – 7.18 (m, 0H), 7.15 (d, J = 8.9 Hz, 0H), 5.85 (s, 0H), 2.75 – 2.63 (m, 0H), 2.27 – 2.19 (m, 0H), 1.98 – 1.90 (m, 0H), 1.77 – 1.52 (m, 0H), 1.23 – 1.08 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.64, 142.31, 132.49, 129.68, 129.29, 128.98, 128.09, 127.91, 126.55, 122.43, 121.26, 120.52, 114.04, 60.72, 55.89, 33.56, 25.95, 25.17, 25.02. Selected FT-IR frequencies (KBr, cm⁻¹): 3305 (N-H stretching), 2663 (O-H stretching). UV (nm): 235, 281, 335 nm. Anal. calcd for C₂₃H₂₅NO: C 83.34, H 7.60, N 4.23, found: C 83.43, H 7.25, N 4.41. ESI-MS: for C₂₃H₂₅NO [M + Na]⁺ calculated m/z = 354.1828; found m/z = 354.1828.

Ligand L5:

Reaction of benzaldehyde (1 equiv), morpholine (1.2 equiv), 2-naphthol (1mmol) and N,Ndimethylethanolamine (DMEA) (7.5 mol%) afforded ligand L5 as white solid. Yield, 92%. ¹H NMR (400 MHz, CDCl₃) δ 13.12 (s, 1H), 7.85 (d, J = 8.6 Hz, 1H), 7.69 (t, 2H), 7.57 (d, J = 7.8 Hz, 2H), 7.38 (t, J = 1.4 Hz, 1H), 7.31 – 7.20 (m, 4H), 7.15 (d, J = 8.8 Hz, 1H), 5.12 (s, 1H), 3.90 – 3.58 (m, 4H), 2.52 – 2.14 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.85, 138.74, 132.44, 129.89, 129.07, 129.03, 128.99, 128.92, 128.32, 126.68, 122.74, 121.14, 119.89, 115.22, 72.11, 66.99. Selected FT-IR frequencies (KBr, cm⁻¹): 2762 (O-H stretching). UV (nm): 236, 282, 338 nm. Anal. calcd for C₂₁H₂₁NO₂: C 78.97, H 6.63, N 4.39, found: C 78.50, H 6.24, N 4.50. ESI-MS: for C₂₁H₂₁NO₂ [M + H]⁺ calculated m/z = 320.1645; found m/z = 320.1648.

Complex C1:

The reaction of Cu(OAc)₂.H₂O (0.5 mmol) and Ligand L1 (2 equiv) afforded complex C1. Brown solid. Yield, 76%. M.P. 200 °C. Anal. calcd for $C_{46}H_{36}CuN_2O_2$: C 77.56, H 5.09, N 3.93, found: C 76.74, H 5.11, N 4.05. Selected FT-IR frequencies (KBr, cm⁻¹): 3274 (N-H stretching), No peak found for O-H stretching. UV (nm): 242, 322, 474, 692 nm. ESI-MS: for $C_{46}H_{36}CuN_2O_2$ [M]⁺ calculated m/z = 711.2073; found m/z = 711.1823.

Complex C2:

The reaction of Cu(OAc)₂.H₂O (0.5 mmol) and Ligand L2 (2 equiv) afforded complex C2. Brown solid. Yield, 70%. M.P. 210 °C. Anal. calcd for $C_{48}H_{40}CuN_2O_2$: C 77.87, H 5.45, N 3.78, found: C 78.61, H 6.20, N 3.71. Selected FT-IR frequencies (KBr, cm⁻¹): 3294 (N-H stretching), No peak found for O-H stretching. UV (nm): 236, 278, 331, 473, 680 nm. ESI-MS: for $C_{48}H_{40}CuN_2O_2$ [M + Na]⁺ calculated m/z = 762.2278; found m/z = 762.2279.

Complex C3:

The reaction of Cu(OAc)₂.H₂O (0.5 mmol) and Ligand L3 (2 equiv) afforded complex C3. Light brown solid. Yield, 82%. M.P. 227 °C. Anal. calcd for $C_{54}H_{52}CuN_2O_2$: C 78.66, H 6.36, N 3.40, found: C 78.57, H 6.47, N 3.66. Selected FT-IR frequencies (KBr, cm⁻¹): 3253 (N-H stretching), No peak found for O-H stretching. UV (nm): 237, 278, 324, 476, 697 nm. ESI-MS: for $C_{54}H_{52}CuN_2O_2$ [M + Na]⁺ calculated m/z = 846.3217; found m/z = 846.3219.

Complex C4:

The reaction of Cu(OAc)₂.H₂O (0.5 mmol) and Ligand L4 (2 equiv) afforded complex C4. Brown solid. Yield, 95%. M.P. 254 °C. Anal. calcd for $C_{46}H_{48}CuN_2O_2$: C 76.27, H 6.68, N 3.87, found: C 76.27, H 6.57, N 3.83. Selected FT-IR frequencies (KBr, cm⁻¹): 3269 (N-H stretching), No peak found for O-H stretching. UV (nm): 241, 290, 341, 463, 646 nm. ESI-MS: for $C_{46}H_{48}CuN_2O_2$ [M + Na]⁺ calculated m/z = 746.2904; found m/z = 746.2881. CCDC number: 2241114.

Complex C5:

The reaction of Cu(OAc)₂.H₂O (0.5 mmol) and Ligand L5 (2 equiv) afforded complex C5. Green solid. Yield, 65%. M.P. 220 °C. Anal. calcd for $C_{42}H_{40}CuN_2O_4$: C 72.03, H 5.76, N 4.00, found: C 71.00, H 5.99, N 4.51. Selected FT-IR frequencies (KBr, cm⁻¹): 2964 cm⁻¹ (C-H stretching), No peak found for O-H stretching. UV (nm): 238, 280, 327, 667 nm. ESI-MS: for $C_{42}H_{40}CuN_2O_4$ [M + H]⁺ calculated m/z = 700.2357; found m/z = 700.2351.

Fig S2. Comparison of experimental and theoretical IR spectrum of complexes (a) C1, (b) C2, (c) C3, (d) C4, (e) C5

Fig S3. UV-Visible spectrum of ligands and complexes (a) L1, C1, (b) L2, C2, (c) L3, C3, (d) L4, C4, (e) L5, C5 inset represents the corresponding complexes in 5mM concentration

Fig S4. TGA plot of complexes (a) C1, (b) C2, (c) C3, (d) C4, (e) C5

Complex	Temperature (°C)	Calculated (%)	Experimental (%)
C1	242	33	33
	381	66	65
C2	227	31	31
	349	62	63
C3	295	56	57
	376	71	76
C4	255	32	32
	330	64	64
C5	223	22	21
	354	67	67

Table S4 Calculated and experimental weight loss percentage for complexes C1-C5

Fig S5. ESI-MS spectrum of complex C1 in dichloromethane. Inset represents the theoretical isotopic distribution

Fig S6. ESI-MS spectrum of complex C2 in dichloromethane. Inset represents the theoretical isotopic distribution

Fig S7. ESI-MS spectrum of complex C3 in dichloromethane. Inset represents the theoretical isotopic distribution

Fig S8. ESI-MS spectrum of complex C4 in dichloromethane. Inset represents the theoretical isotopic distribution

Fig S9. ESI-MS spectrum of complex C5 in dichloromethane. Inset represents the theoretical isotopic distribution

Fig S10. FT-IR spectrum of 2-azidoaniline (2a)

Characterization data for the products:

2-azidoaniline (2a)1:

Brown solid, Yield = 85% (0.113 g, 0.85 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.04 (dd, J = 7.9, 1.3 Hz, 1H), 6.97 (td, J = 7.8, 1.4 Hz, 1H), 6.80 (td, J = 7.7, 1.4 Hz, 1H), 6.70 (dd, J = 7.9, 1.3 Hz, 1H), 3.79 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.22, 125.71, 125.33, 119.21, 118.48, 116.00; Selected FT-IR frequencies (KBr, cm⁻¹): 3448, 3388, 2130; ESI-MS: for C₆H₆N₄ [M + Na]⁺ calculated m/z = 157.0485; found m/z = 157.0473.

2,6-diazidoaniline (2a')¹:

Light brown solid, Yield = 8% (0.014 g, 0.08 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.84 (d, J = 6.1 Hz, 2H), 6.81 (d, J = 5.7 Hz, 1H), 3.94 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 126.18, 118.55, 114.61, 111.61; ESI-MS: for C₆H₅N₇ [M + H]⁺ calculated m/z = 176.0679; found m/z = 176.0677.

2-azido-4-methylaniline (2b)²:

Brown liquid, Yield = 66% (0.097 g, 0.654 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 6.76 (ddd, J = 8.0, 1.7, 0.6 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 3.66 (s, 1H), 2.26 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 135.67, 128.95, 126.32, 125.21, 118.91, 116.18, 77.48, 77.16, 76.84, 20.66; ESI-MS: for C₇H₈N₄ [M + H]⁺ calculated m/z = 149.0822; found m/z = 149.0816.

2,6-diazido-4-methylaniline (2b')³:

Light brown solid, Yield = 14% (0.026 g, 0.137 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.64 (s, 2H), 3.78 (s, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 128.59, 127.75, 126.07, 115.20, 20.84; ESI-MS: for C₇H₇N₇ [M + Na]⁺ calculated m/z = 212.0655; found m/z = 212.0661.

2-azido-4-butylaniline (2c):

Brown liquid, Yield = 82% (0.155 g, 0.814 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 6.78 (dd, J = 8.0, 1.8 Hz, 1H), 6.62 (d, J = 8.0 Hz, 1H), 3.68 (s, 2H), 2.53 (t, 3H), 1.61 – 1.52 (m, 2H), 1.35 (dq, J = 14.5, 7.3 Hz, 2H), 0.93 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.85, 134.22, 125.68, 125.09, 118.23, 116.12, 77.48, 77.16, 76.84, 34.95, 33.96, 22.40, 14.06; ESI-MS: for C₁₀H₁₄N₄ [M + H]⁺ calculated m/z = 191.1291; found m/z = 191.1293.

2,6-diazido-4-butylaniline (2c'):

Brown solid, Yield = 7% (0.016 g, 0.069 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.64 (s, 2H), 3.79 (s, 2H), 2.53 (t, J = 7.7 Hz, 2H), 1.61 – 1.52 (m, 2H), 1.35 (dq, J = 14.5, 7.3 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 133.89, 127.93, 125.98, 114.54, 35.15, 33.87, 22.42, 14.06; ESI-MS: for C₁₀H₁₃N₇ [M + H]⁺ calculated m/z = 232.1305; found m/z = 232.1304.

2-azido-4-isopropylaniline (2d):

Brown liquid, Yield = 72% (0.126 g, 0.715 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.90 (s, 1H), 6.85 (d, J = 8.0 Hz, 1H), 6.65 (d, J = 8.0 Hz, 1H), 3.69 (s, 1H), 2.85 (dq, J = 13.5, 6.6 Hz, 1H), 1.25 (d, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.29, 135.96, 124.99, 123.62, 116.31, 116.15, 77.48, 77.16, 76.84, 33.51, 24.20; ESI-MS: for C₉H₁₂N₄ [M + H]⁺ calculated m/z = 177.1135; found m/z = 177.1134.

2,6-diazido-4-isopropylaniline (2d'):

Brown solid, Yield = 13% (0.028 g, 0.128 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.69 (s, 2H), 3.80 (s, 2H), 2.90 – 2.77 (m, 1H), 1.24 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.00, 128.08, 125.96, 112.62, 33.84, 24.16; ESI-MS: for C₉H₁₁N₇ [M + H]⁺ calculated m/z = 218.1149; found m/z = 218.1147.

2-azido-4-(tert-butyl)aniline (2e)¹:

Brown liquid, Yield = 68% (0.129 g, 0.678 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.02 (s, 1H), 6.98 (dd, J = 8.3, 2.1 Hz, 1H), 6.65 (d, J = 8.3 Hz, 1H), 3.69 (s, 1H), 1.29 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.71, 135.71, 124.72, 122.75, 115.90, 115.40, 34.40, 31.57; ESI-MS: for C₁₀H₁₄N₄ [M + H]⁺ calculated m/z = 191.1291; found m/z = 191.1286.

2,6-diazido-4-(tert-butyl)aniline (2e')¹:

Brown solid, Yield = 18% (0.041 g, 0.177 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.83 (s, 2H), 3.81 (s, 2H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 142.39, 127.85, 125.63, 111.77, 34.72, 31.47; ESI-MS: for C₁₀H₁₃N₇ [M + H]⁺ calculated m/z = 232.1305; found m/z = 232.1301.

2-azido-4,5-dimethylaniline (2f)⁴:

Brown solid, Yield = 70% (0.113 g, 0.696 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.79 (s, 1H), 6.51 (s, 1H), 3.60 (s, 2H), 2.17 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.74, 134.03, 127.53, 122.60, 119.45, 117.77, 77.48, 77.16, 76.84, 19.42, 19.03; ESI-MS: for C₈H₁₀N₄ [M + H]⁺ calculated m/z = 163.0978; found m/z = 163.0978.

2,6-diazido-3,4-dimethylaniline (2f'):

Brown solid, Yield = 10% (0.020 g, 0.098 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.71 (s, 1H), 3.88 (s, 2H), 2.24 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 130.48, 127.94, 127.33, 125.69, 123.23, 117.12, 19.84, 14.02; ESI-MS: for C₈H₉N₇ [M + H]⁺ calculated m/z = 204.0992; found m/z = 204.0987.

2-azido-5-methylaniline (2g)⁴:

Brown liquid, Yield = 68% (0.100 g, 0.676 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.91 (d, J = 8.0 Hz, 1H), 6.60 (dd, J = 8.0, 0.6 Hz, 1H), 6.52 (s, 1H), 3.73 (s, 1H), 2.24 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.93, 135.64, 122.66, 119.98, 118.33, 116.73, 21.12; ESI-MS: for C₇H₈N₄ [M + H]⁺ calculated m/z = 149.0822; found m/z = 149.0813.

2-azido-5-(tert-butyl)aniline (2h):

Brown liquid, Yield = 57% (0.108 g, 0.567 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 8.3 Hz, 0H), 6.83 (dd, J = 8.3, 2.2 Hz, 0H), 6.74 (s, 0H), 3.76 (s, 0H), 1.28 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.18, 137.64, 122.70, 118.13, 116.47, 113.46, 34.50, 31.43; ESI-MS: for C₁₀H₁₄N₄ [M + H]⁺ calculated m/z = 191.1291; found m/z = 191.1289.

2-azido-6-methylaniline (2i)²:

Brown liquid, Yield = 63% (0.093 g, 0.627 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.93 (dd, J = 7.9, 0.7 Hz, 1H), 6.86 (dd, J = 7.5, 0.6 Hz, 1H), 6.73 (t, J = 7.7 Hz, 1H), 3.76 (s, 1H), 2.16 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.46, 126.88, 124.97, 123.61, 118.51, 116.10, 77.48, 17.47; ESI-MS: for C₇H₈N₄ [M + H]⁺ calculated m/z = 149.0822; found m/z = 149.0817.

6-azido-2,3-dimethylaniline (2j)⁴:

Brown liquid, Yield = 58% (0.094 g, 0.579 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.82 (d, J = 8.1 Hz, 1H), 6.65 (d, J = 8.1 Hz, 1H), 3.75 (s, 1H), 2.25 (s, 1H), 2.06 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.28, 133.67, 123.04, 122.01, 120.34, 115.19, 20.40, 13.20; ESI-MS: for C₈H₁₀N₄ [M + H]⁺ calculated m/z = 163.0978; found m/z = 163.0965.

2-azido-4,6-dimethylaniline (2k)¹:

Brown solid, Yield = 71% (0.115 g, 0.709 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.74 (s, 1H), 6.69 (s, 1H), 3.62 (s, 1H), 2.25 (s, 1H), 2.13 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 133.89, 128.12, 127.68, 124.86, 123.75, 116.45, 20.64, 17.42; ESI-MS: for C₈H₁₀N₄ [M]⁺ calculated m/z = 162.0905; found m/z = 162.0900.

2-azido-6-ethylaniline (2l)²:

Brown liquid, Yield = 61% (0.098 g, 0.604 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.95 (dd, J = 7.9, 1.1 Hz, 1H), 6.91 (d, 1H), 6.79 (t, J = 7.7 Hz, 1H), 3.82 (s, 1H), 2.52 (q, J = 7.5 Hz, 2H), 1.26 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.84, 129.27, 125.08, 124.78, 118.63, 115.93, 24.10, 12.87; ESI-MS: for C₈H₁₀N₄ [M + H]⁺ calculated m/z = 163.0978; found m/z = 163.0936.

2-azido-4-methoxyaniline (2m)¹:

Brown solid, Yield = 60% (0.098 g, 0.596 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.65 (d, J = 8.6 Hz, 1H), 6.62 (s, 1H), 6.55 (dd, J = 8.6, 2.6 Hz, 1H), 3.76 (s, 3H), 3.52 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.32, 131.93, 126.27, 117.15, 111.35, 104.72, 56.00; ESI-MS: for C₇H₈N₄O [M + H]⁺ calculated m/z = 165.0771; found m/z = 165.0780.

3-azido-[1,1'-biphenyl]-2-amine (2n):¹

Brown solid, Yield = 66% (0.138 g, 0.656 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.42 (m, J = 5.5 Hz, 2H), 7.42 – 7.34 (m, 1H), 7.07 (d, J = 7.8 Hz, 1H), 6.96 (d, J = 7.5 Hz, 1H), 6.86 (t, J = 7.7 Hz, 1H), 3.96 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.81, 135.64, 129.02, 128.99, 128.51, 127.59, 126.86, 125.32, 118.44, 117.41; ESI-MS: for C₁₂H₁₀N₄ [M + H]⁺ calculated m/z = 211.0978; found m/z = 211.0979.

3-azido-[1,1'-biphenyl]-4-amine (20)²:

Brown solid, Yield = 81% (0.170 g, 0.808 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 8.3, 1.2 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.32 (d, J = 7.4 Hz, 1H), 7.25 (s, 1H), 7.21 (dd, J = 8.2, 2.0 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 3.87 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.54, 137.62, 132.63, 128.93, 126.91, 126.61, 125.61, 124.57, 117.02, 116.25; ESI-MS: for C₁₂H₁₀N₄ [M + H]⁺ calculated m/z = 211.0978; found m/z = 211.0977.

3,5-diazido-[1,1'-biphenyl]-4-amine (20'):

Brown solid, Yield = 11% (0.027 g, 0.107 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.04 (s, 2H), 4.00 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 139.92, 132.23, 129.56, 129.04, 127.38, 126.65, 126.37, 113.33; ESI-MS: for C₁₂H₉N₇ [M + H]⁺ calculated m/z = 252.0992; found m/z = 252.0992.

2-azido-6-bromoaniline (2p)⁵:

Brown solid, Yield = 58% (0.123 g, 0.577 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, J = 8.1, 1.2 Hz, 1H), 6.98 (dd, J = 7.9, 1.2 Hz, 1H), 6.65 (t, J = 8.0 Hz, 1H), 4.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.52, 128.74, 126.01, 118.92, 117.32, 109.57; ESI-MS: for C₆H₅BrN₄ [M + H]⁺ calculated m/z = 212.9770; found m/z = 212.9774.

2-azido-5-chloroaniline (2q)⁵:

Orange liquid, Yield = 53% (0.089 g, 0.527 mmol); ¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, J = 8.4 Hz, 1H), 6.74 (dd, J = 8.4, 2.3 Hz, 1H), 6.67 (s, 1H), 3.88 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 139.20, 130.84, 123.88, 119.31, 118.78, 115.50; ESI-MS: for C₆H₅ClN₄ [M + H]⁺ calculated m/z = 169.0276; found m/z = 169.0289.

2-azido-5-bromoaniline (2r)⁵:

Brown liquid, Yield = 56% (0.119 g, 0.558 mmol); ¹H NMR (400 MHz, MeOD) δ 6.91 (d, J = 8.3 Hz, 1H), 6.87 (s, 1H), 6.80 (d, J = 8.4 Hz, 1H), 4.88 (s, 1H); ¹³C NMR (100 MHz, MeOD) δ 142.26, 125.30, 121.48, 120.64, 119.38, 118.97; ESI-MS: for C₆H₅BrN₄ [M + H]⁺ calculated m/z = 212.9770; found m/z = 212.9772.

2-azido-4-chloroaniline (2s)²:

Brown solid, Yield =63% (0.105 g, 0.626 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.00 (s, 1H), 6.91 (dd, J = 8.5, 2.2 Hz, 1H), 6.61 (d, J = 8.5 Hz, 1H), 3.80 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.89, 126.34, 125.66, 123.36, 118.41, 116.65; ESI-MS: for C₆H₅ClN₄ [M + H]⁺ calculated m/z = 169.0276; found m/z = 169.0287.

2-azido-4-bromoaniline (2t)²:

Brown solid, Yield = 70% (0.149 g, 0.699 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.12 (s, 1H), 7.04 (dd, J = 8.5, 2.1 Hz, 1H), 6.56 (d, J = 8.5 Hz, 1H), 3.81 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.36, 128.52, 126.62, 121.18, 117.03, 109.92; ESI-MS: for C₆H₅BrN₄ [M + H]⁺ calculated m/z = 212.9770; found m/z = 212.9767.

2-azido-4-iodoaniline (2u)⁶:

Brown solid, Yield = 61% (0.158 g, 0.607 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.26 (s, 1H), 7.21 (d, J = 8.3 Hz, 1H), 6.45 (d, J = 8.3 Hz, 1H), 3.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.04, 134.42, 126.86, 126.78, 117.50, 78.51; ESI-MS: for C₆H₅IN₄ [M + H]⁺ calculated m/z = 260.9632; found m/z = 260.9629.

2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3a)⁷:

Light yellow solid, Yield = 81% (0.047 g, 0.202 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.90 (d, J = 7.1 Hz, 1H), 7.46 (t, J = 8.1, 6.9 Hz, 1H), 7.37 (t, 1H), 7.29 – 7.20 (m, 1H), 6.89 (dd, J = 8.0, 1.1 Hz, 1H), 6.84 (td, J = 7.7, 1.3 Hz, 1H), 4.60 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.74, 141.04, 130.26, 129.06, 128.56, 125.94, 124.43, 123.17, 120.40, 118.39, 117.77; ESI-MS: for C₁₄H₁₂N₄ [M + H]⁺ calculated m/z = 237.1135; found m/z = 237.1128.

4-methyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3b)⁷:

Yellow solid, Yield = 83% (0.052 g, 0.207 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.90 (d, J = 7.4 Hz, 2H), 7.46 (t, J = 7.4 Hz, 2H), 7.38 (d, J = 7.4 Hz, 1H), 7.07 (d, J = 12.2 Hz, 2H), 6.81 (d, J = 8.0 Hz, 1H), 4.42 (s, 2H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.68, 138.47, 130.96, 130.35, 129.06, 128.52, 128.14, 125.93, 124.74, 123.18, 120.39, 117.91, 20.35; ESI-MS: for C₁₅H₁₄N₄ [M + Na]⁺ calculated m/z = 273.1111; found m/z = 273.1112.

4-butyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3c):

Yellow solid, Yield = 78% (0.056 g, 0.195 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.91 (d, J = 7.3 Hz, 2H), 7.46 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 7.1 Hz, 1H), 7.08 (d, J = 6.1 Hz, 2H), 6.83 (d, J = 7.5 Hz, 1H), 4.42 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.64 - 1.52 (m, 2H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 4.42 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.64 - 1.52 (m, 2H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 4.42 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.64 - 1.52 (m, 2H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 4.42 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.64 - 1.52 (m, 2H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 4.42 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.64 - 1.52 (m, 2H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 4.42 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.64 - 1.52 (m, 2H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 4.42 (s, 2H), 2.57 (t, J = 7.4 Hz, 2H), 1.64 - 1.52 (m, 2H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 1.43 - 1.30 (m, 2H), 0.93 (t, J = 7.5 Hz, 1H), 1.45 - 1.52 (m, 2H), 1.55 (m, 2H), 1.

= 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.72, 138.67, 135.16, 133.46, 130.36, 129.08, 128.54, 125.98, 124.16, 123.23, 120.43, 117.89, 34.61, 33.83, 22.38, 14.09; ESI-MS: for C₁₈H₂₀N₄ [M + H]⁺ calculated m/z = 293.1761; found m/z = 293.1759.

4-isopropyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3d):

Yellow solid, Yield = 85% (0.059 g, 0.212 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.91 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 10.4, 4.7 Hz, 2H), 7.37 (d, 1H), 7.14 (d, J = 2.0 Hz, 1H), 7.12 (s, 1H), 6.84 (d, J = 8.0 Hz, 1H), 4.40 (s, 2H), 2.87 (hept, J = 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.65, 139.45, 138.78, 130.34, 129.01, 128.46, 128.42, 125.91, 123.13, 122.32, 120.49, 117.86, 33.16, 24.15; ESI-MS: for C₁₇H₁₈N₄ [M + H]⁺ calculated m/z = 279.1604; found m/z = 279.1600.

4-(tert-butyl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3e):

Yellow solid, Yield = 78% (0.056 g, 0.195 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.92 (d, J = 7.5 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.38 (d, J = 7.3 Hz, 1H), 7.30 (d, J = 8.5 Hz, 1H), 7.24 (s, 1H), 6.86 (d, J = 8.4 Hz, 1H), 4.37 (s, 2H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 147.77, 142.02, 138.54, 130.40, 129.08, 128.54, 127.56, 125.98, 122.97, 121.49, 120.58, 117.63, 34.20, 31.52; ESI-MS: for C₁₈H₂₀N₄ [M + H]⁺ calculated m/z = 293.1761; found m/z = 293.1751.

4,5-dimethyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3f):

Light yellow solid, Yield = 87% (0.057 g, 0.217 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.89 (d, J = 7.8 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.37 (d, 1H), 7.02 (s, 1H), 6.69 (s, 1H), 4.36 (s, 2H), 2.23 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.51, 139.03, 138.47, 130.40, 128.99, 128.41, 126.85, 125.87, 125.03, 121.08, 120.37, 119.04, 19.70, 18.75; ESI-MS: for C₁₆H₁₆N₄ [M + H]⁺ calculated m/z = 265.1448; found m/z = 265.1453.

5-methyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3g):

Light yellow solid, Yield = 76% (0.047 g, 0.188 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.90 (d, J = 7.1 Hz, 2H), 7.46 (t, J = 8.1, 6.9 Hz, 2H), 7.37 (t, 1H), 7.15 (d, J = 8.0 Hz, 1H), 6.71 (s, 1H), 6.66 (dd, 1H), 4.51 (s, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.66, 140.77, 140.57, 130.38, 129.06, 128.51, 125.94, 124.26, 121.09, 120.42, 119.39, 118.15, 21.37; ESI-MS: for C₁₅H₁₄N₄ [M + H]⁺ calculated m/z = 251.1291; found m/z = 251.1287.

5-(tert-butyl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3h):

Yellow solid, Yield = 83% (0.06 g, 0.207 mmol); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.82 (dd, J = 8.0, 1.0 Hz, 2H), 7.37 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 6.79 (dd, J = 8.3, 1.9 Hz, 1H), 4.48 (s, 2H), 1.24 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.75, 147.56, 140.44, 130.34, 129.00, 128.44, 125.88, 123.97, 120.88, 120.33, 115.83, 114.80, 34.77, 31.24; ESI-MS: for C₁₈H₂₀N₄ [M + H]⁺ calculated m/z = 293.1761; found m/z = 293.1756.

2-methyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3i):

Light yellow solid, Yield = 80% (0.049 g, 0.198 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.90 (d, J = 7.1 Hz, 2H), 7.45 (t, J = 8.1, 6.9 Hz, 2H), 7.37 (d, J = 7.4 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H), 6.77 (t, J = 7.7 Hz, 1H), 4.51 (s, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.68, 139.46, 131.27, 130.28, 129.02, 128.49, 125.88, 124.74, 122.88, 122.50, 120.78, 117.61, 17.82; ESI-MS: for C₁₅H₁₄N₄ [M + K]⁺ calculated m/z = 289.0850; found m/z = 289.0847.

2,3-dimethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3j):

Yellow solid, Yield = 81% (0.053 g, 0.202 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.90 (d, J = 7.1 Hz, 2H), 7.45 (t, J = 8.1, 6.9 Hz, 2H), 7.37 (d, J = 7.4 Hz, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.69 (d, J = 8.1 Hz, 1H), 4.44 (s, 2H), 2.34 (s, 3H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.68, 139.36, 138.52, 130.39, 129.04, 128.47, 125.91, 122.80, 121.75, 121.53, 120.95, 119.78, 20.87, 13.41; ESI-MS: for C₁₆H₁₆N₄ [M + H]⁺ calculated m/z = 265.1448; found m/z = 265.1452.

2,4-dimethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3k)¹:

Yellow solid, Yield = 85% (0.056 g, 0.212 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.90 (d, J = 7.1 Hz, 2H), 7.45 (t, J = 8.1, 6.9 Hz, 2H), 7.37 (d, J = 7.4 Hz, 1H), 6.99 (s, 1H), 6.95 (s, 1H), 4.33 (s, 2H), 2.28 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.63, 136.90, 132.18, 130.35, 129.02, 128.46, 127.22, 125.88, 124.85, 122.91, 122.75, 120.76, 20.29, 17.81; ESI-MS: for C₁₆H₁₆N₄ [M + Na]⁺ calculated m/z = 287.1267; found m/z = 287.1267.

2-ethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3l):

Light yellow solid, Yield = 82% (0.054 g, 0.205 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.91 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.4 Hz, 2H), 7.38 (d, J = 7.4 Hz, 1H), 7.20 (d, J = 7.5 Hz, 1H), 7.14 (d, J = 7.9 Hz, 1H), 6.83 (t, J = 7.7 Hz, 1H), 4.51 (s, 2H), 2.61 (q, J = 7.5 Hz, 2H), 1.31 (t, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.77, 141.98, 139.07, 130.38, 129.35, 129.08, 128.54, 125.95, 123.24, 122.61, 120.98, 117.90, 24.41, 12.88; ESI-MS: for C₁₆H₁₆N₄ [M + Na]⁺ calculated m/z = 287.1267; found m/z = 287.1264.

4-methoxy-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3m):

Light yellow solid, Yield = 75% (0.05 g, 0.187 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.90 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.37 (d, J = 7.4 Hz, 1H), 6.88 (dd, J = 9.2, 2.1 Hz, 1H), 6.86 (s, 1H), 6.84 (d, J = 6.3 Hz, 1H), 4.23 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 152.53, 147.79, 134.62, 130.24, 129.06, 128.57, 125.95, 123.68, 120.45, 119.06, 116.77, 109.96, 56.11; ESI-MS: for C₁₅H₁₄N₄O [M + H]⁺ calculated m/z = 267.1240; found m/z = 267.1239.

3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-2-amine (3n):

Yellow solid, Yield = 88% (0.068 g, 0.219 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.92 (d, J = 7.6 Hz, 2H), 7.53 – 7.44 (m, J = 8.5 Hz, 6H), 7.44 – 7.35 (m, J = 16.9, 9.6 Hz, 2H), 7.30 – 7.20 (m, J = 14.8, 7.8 Hz, 2H), 6.91 (t, J = 7.7 Hz, 1H), 4.61 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.83, 138.91, 138.36, 131.53, 130.29, 130.22, 129.26, 129.10, 128.59, 128.06, 125.96, 124.18, 123.44, 120.93, 117.83; ESI-MS: for C₂₀H₁₆N₄ [M + H]⁺ calculated m/z = 313.1448; found m/z = 313.1444.

3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-amine (30):

Yellow solid, Yield = 87% (0.067 g, 0.217 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.92 (dd, J = 8.3, 1.3 Hz, 2H), 7.55 (dd, J = 8.3, 1.2 Hz, 2H), 7.52 – 7.48 (m, 2H), 7.48 – 7.42 (m, 3H), 7.40 (d, J = 4.5 Hz, 1H), 7.37 (d, J = 7.3 Hz, 1H), 7.32 (t, J = 7.3 Hz, 1H), 6.97 (d, J = 8.9 Hz, 1H), 4.69 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.83, 140.25, 139.77, 131.81, 130.23, 129.09, 129.02, 128.83, 128.61, 127.14, 126.52, 125.97, 123.42, 122.87, 120.41, 118.19; ESI-MS: for C₂₀H₁₆N₄ [M + H]⁺ calculated m/z = 313.1448; found m/z = 313.1446.

2-bromo-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3p):

Orange solid, Yield = 79% (0.061 g, 0.196 mmol); 1H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 7.91 (d, J = 7.2 Hz, 2H), 7.55 (d, J = 7.9 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 7.40 (d, J = 7.2 Hz, 1H), 7.25 (d, J = 9.3 Hz, 1H), 6.73 (t, J = 7.9 Hz, 1H), 5.13 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.98, 139.49, 133.62, 130.04, 129.14, 128.76, 125.99, 123.76, 123.43, 120.55, 118.22, 111.34; ESI-MS: for C₁₄H₁₁BrN₄ [M + H]⁺ calculated m/z = 315.0240; found m/z = 315.0238.

5-chloro-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3q):

Yellow solid, Yield = 73% (0.049 g, 0.181 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.89 (d, J = 7.1 Hz, 2H), 7.46 (t, J = 10.6, 4.3 Hz, 2H), 7.39 (d, J = 7.4 Hz, 1H), 7.20 (d, J = 8.5 Hz, 1H), 6.90 (s, 1H), 6.81 (dd, J = 8.5, 2.2 Hz, 1H), 4.74 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.94, 142.08, 135.80, 130.07, 129.13, 128.73, 125.99, 125.33, 121.65, 120.26, 118.33, 117.28; ESI-MS: for C₁₄H₁₁ClN₄ [M + H]⁺ calculated m/z = 271.0745; found m/z = 271.0738.

5-bromo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3r)⁸:

Orange solid, Yield = 80% (0.063 g, 0.199 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.89 (d, J = 8.1 Hz, 2H), 7.46 (t, 2H), 7.39 (dd, J = 7.3, 1.5 Hz, 1H), 7.13 (dd, J = 8.5, 1.3 Hz, 1H), 7.06 (s, 1H), 6.96 (d, J = 8.4 Hz, 1H), 4.75 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.94, 142.22, 130.04, 129.13, 128.74, 125.98, 125.45, 123.74, 122.05, 121.21, 120.25, 120.19; ESI-MS: for C₁₄H₁₁BrN₄ [M + H]⁺ calculated m/z = 315.0240; found m/z = 315.0232.

4-chloro-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3s):

Yellow solid, Yield = 75% (0.051 g, 0.188 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.3 Hz, 2H), 7.39 (d, J = 7.5 Hz, 1H), 7.28 (s, 1H), 7.20 (d, J = 8.7 Hz, 1H), 6.84 (d, J = 8.6 Hz, 1H), 4.70 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.94, 139.67, 130.07, 129.98, 129.12, 128.75, 125.98, 123.99, 123.39, 122.66, 120.16, 118.80; ESI-MS: for C₁₄H₁₁ClN₄ [M + H]⁺ calculated m/z = 271.0745; found m/z = 271.0750.

4-bromo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3t):

Orange solid, Yield = 78% (0.061 g, 0.193 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.46 (t, J = 7.3 Hz, 2H), 7.41 (d, J = 6.8 Hz, 1H), 7.38 (s, 1H), 7.33 (d, J = 8.6 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 4.72 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.94, 140.14, 132.89, 129.97, 129.13, 128.76, 126.76, 125.99, 123.77, 120.17, 119.14, 109.13; ESI-MS: for C₁₄H₁₁BrN₄ [M + H]⁺ calculated m/z = 315.0240; found m/z = 315.0232.

4-iodo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3u):

Yellow solid, Yield = 88% (0.079 g, 0.219 mmol); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.89 (d, 2H), 7.56 (s, 1H), 7.52 – 7.42 (m, 3H), 7.38 (d, J = 6.6 Hz, 1H), 6.67 (d, J = 8.5 Hz, 1H), 4.74 (s, 2H); ¹³C NMR (100 MHz, MeOD) δ 148.93, 143.47, 139.98, 134.26, 131.36, 129.99, 129.54, 126.87, 125.02, 123.00, 120.28, 76.62; ESI-MS: for C₁₄H₁₁IN₄ [M + H]⁺ calculated m/z = 363.0101; found m/z = 363.0095.

Copies of ¹H and ¹³C NMR Spectra of the Products

26	05	05	80	8	66	66	97	97	95	95	82	82	80	80	79	78	71	7	69	69	79
~	~	~	7	7	ю	ю	ю	ю	ю	ю	ю	ю	ю	6.	ю	ю	6.	<u>ن</u>	<u>ن</u>	ю	m.
	_				L	L.	_	_	_	- (1.			_	_	_					1

Fig S12. ¹³C NMR spectrum of 2-azidoaniline (2a)

Fig S14. ¹³C NMR spectrum of 2,6-diazidoaniline (2a')

Fig S17. ¹H NMR spectrum of 2,6-diazido-4-methylaniline (**2b'**)

Fig S20. ¹³C NMR spectrum of 2-azido-4-butylaniline (2c)

.33.89 .27.93 .25.98	.14.54	7.48 CDCl3 7.16 CDCl3 6.84 CDCl3	:5.15 :3.87	2.42	4.06
			n n	2	÷
$1 \leq 1$	1		57	1	

Fig S22. ¹H NMR spectrum of 2,6-diazido-4-butylaniline (2c')

2.90 2.88 2.85 2.85 2.85 2.81 2.81

Fig S23. ¹H NMR spectrum of 2-azido-4-isopropylaniline (2d)

Fig S26. ¹³C NMR spectrum of 2,6-diazido-4-isopropylaniline (2d')

Fig S29. ¹H NMR spectrum of 2,6-diazido-4-(tert-butyl)aniline (2e')

Fig S32. ¹³C NMR spectrum of 2-azido-4,5-dimethylaniline (2f)

Fig S34. ¹³C NMR spectrum of 2,6-diazido-3,4-dimethylaniline (2f')

26 92 61 61 52 52 52	73	24
00000	ň	N.

Fig S35. ¹H NMR spectrum of 2-azido-5-methylaniline (2g)

Fig S38. ¹³C NMR spectrum of 2-azido-5-(tert-butyl)aniline (2h)

Fig S40. ¹³C NMR spectrum of 2-azido-6-methylaniline (2i)

7.26	6.84 6.81 6.66 6.64 6.64	3.75	2.25 2.06

Fig S41. ¹H NMR spectrum of 6-azido-2,3-dimethylaniline (2j)

Fig S44. ¹³C NMR spectrum of 2-azido-4,6-dimethylaniline (2k)

Fig S45. ¹H NMR spectrum of 2-azido-6-ethylaniline (21)

135.84 129.27 125.08 124.78 118.63 115.93	77.48 CDCl3 77.16 CDCl3 76.84 CDCl3	24.10	12.87
$\langle \langle \langle \rangle \rangle$	\checkmark	1	1

Fig S47. ¹H NMR spectrum of 2-azido-4-methoxyaniline (**2m**)

Fig S49. ¹H NMR spectrum of 3-azido-[1,1'-biphenyl]-2-amine (2n)

Fig S50. ¹³C NMR spectrum of 3-azido-[1,1'-biphenyl]-2-amine (2n)

Fig S51. ¹H NMR spectrum of 3-azido-[1,1'-biphenyl]-4-amine (20)

40.54 37.62 37.62 28.93 26.91 26.61 25.61 17.02 16.25

77.48 CDCl3 77.16 CDCl3 76.84 CDCl3

- 3.87

Fig S52. ¹³C NMR spectrum of 3-azido-[1,1'-biphenyl]-4-amine (20)

Fig S53. ¹H NMR spectrum of 3,5-diazido-[1,1'-biphenyl]-4-amine (20')

Fig S54. ¹³C NMR spectrum of 3,5-diazido-[1,1'-biphenyl]-4-amine (20')

-4.25

Fig S56. ¹³C NMR spectrum of 2-azido-6-bromoaniline (**2p**)

- 3.88

Fig S57. ¹H NMR spectrum of 2-azido-5-chloroaniline (2q)

0	4 α H α O	CDCI3 CDCI3 CDCI3
Ñ	à à n Ň Ď	894
Ģ.		4 - 8
ĕ	8 2 1 2 1	6 7 7
-		
1		\checkmark

7.26 6.93 6.91 6.75 6.73 6.73 6.72

Fig S59. ¹H NMR spectrum of 2-azido-5-bromoaniline (2r)

Fig S62. ¹³C NMR spectrum of 2-azido-4-chloroaniline (2s)

7.26 7.12 7.05 7.03 7.03 6.57 6.57

Br NH₂

-3.81

Fig S64. ¹³C NMR spectrum of 2-azido-4-bromoaniline (2t)

Fig S65. ¹H NMR spectrum of 2-azido-4-iodoaniline (2u)

 $\begin{array}{c} 8.05\\ 7.91\\ 7.46\\ 7.46\\ 7.46\\ 7.46\\ 7.46\\ 7.46\\ 7.33$

Fig S67. ¹H NMR spectrum of 2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3a)

Fig S68. ¹³C NMR spectrum of 2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3a**)

Fig S69. ¹H NMR spectrum of 4-methyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3b)

Fig S71. ¹H NMR spectrum of 4-butyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3c)

Fig S72. ¹³C NMR spectrum of 4-butyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3c)

Fig S73. ¹H NMR spectrum of 4-isopropyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3d)

Fig S74. ¹³C NMR spectrum of 4-isopropyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3d**)

Fig S75. ¹H NMR spectrum of 4-(tert-butyl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3e**)

Fig S76. ¹³C NMR spectrum of 4-(tert-butyl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3e**)

Fig S77. ¹H NMR spectrum of 4,5-dimethyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3f**)

Fig S78. ¹³C NMR spectrum of 4,5-dimethyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline (**3f**)

Fig S79. ¹H NMR spectrum of 5-methyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3g**)

Fig S80. ¹³C NMR spectrum of 5-methyl-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3g**)

Fig S81. ¹H NMR spectrum of 5-(tert-butyl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3h**)

153.75 140.45 140.45 130.34 129.00 128.44 125.88 123.97 125.88 1120.88 1120.88 114.80 114.80	77.48 77.16 76.84	- 34.77 - 31.24
--	-------------------------	--------------------

Fig S82. ¹³C NMR spectrum of 5-(tert-butyl)-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3h**)

Fig S83. ¹H NMR spectrum of 2-methyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3i)

Fig S84. ¹³C NMR spectrum of 2-methyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3i**)

8.00 7.91 7.45 7.45 7.36 7.38 7.04 7.02 6.70 6.70 6.70 6.70	4.44	2.34 2.16
		1 1

Fig S85. ¹H NMR spectrum of 2,3-dimethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3**j)

Fig S86. ¹³C NMR spectrum of 2,3-dimethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3**j)

Fig S87. ¹H NMR spectrum of 2,4-dimethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3**k)

Fig S88. ¹³C NMR spectrum of 2,4-dimethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3**k)

Fig S89. ¹H NMR spectrum of 2-ethyl-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3**I)

Fig S90. ¹³C NMR spectrum of 2-ethyl-6-(4-phenyl-1H-1,2,3-triazol-1-yl)aniline (**3**I)

Fig S91. ¹H NMR spectrum of 4-methoxy-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3m**)

 $\begin{array}{c} 8.10\\ 7.93\\ 7.91\\ 7.51\\ 7.49\\ 7.49\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.38\\ 7.38\\ 7.38\\ 7.38\\ 7.38\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 7.28\\ 6.91\\$

Fig S93. ¹H NMR spectrum of 3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-2-amine (**3n**)

8,11 8,12 9,12 9,12 9,12 1

Fig S95. ¹H NMR spectrum of 3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-amine (**30**)

Fig S96. ¹³C NMR spectrum of 3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)-[1,1'-biphenyl]-4-amine (**30**)

8.05 7.91 7.56 7.57 7.47 7.44 7.44 7.44 7.44 7.24 6.73 6.73 6.71

Fig S97. ¹H NMR spectrum of 2-bromo-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3p**)

Fig S98. ¹³C NMR spectrum of 2-bromo-6-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3p**)

008674446801008888000000000000000000000000000	4
000000000000000000000000000000000000000	4
	Ì

Fig S99. ¹H NMR spectrum of 5-chloro-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3q)

Fig S101. ¹H NMR spectrum of 5-bromo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3r**)

Fig S102. ¹³C NMR spectrum of 5-bromo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3r**)

-4.70

8.05 7.90 7.98 7.48 7.45 7.45 7.45 7.45 7.28 7.28 6.85 6.85 6.85 6.82

Fig S103. ¹H NMR spectrum of 4-chloro-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (3s)

-147.94 -139.67 -139.67 129.12 129.12 122.75 -122.75 -122.66 $-112.3.99$ -118.80	77.48 CDCl3 77.16 CDCl3 76.84 CDCl3
--	---

Fig S104. ¹³C NMR spectrum of 4-chloro-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3s**)

8.05 7.48 7.48 7.45 7.45 7.45 7.45 7.32 7.32 6.73 6.73 6.78 6.78	4.72
	1

Fig S105. ¹H NMR spectrum of 4-bromo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3t**)

Fig S107. ¹H NMR spectrum of 4-iodo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3u**)

Fig S108. ¹³C NMR spectrum of 4-iodo-2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)aniline (**3u**)

Fig S110. ESI-MS spectrum of the compound 2c'

Fig S113. ESI-MS spectrum of the compound 2h

Fig S115. ESI-MS spectrum of the compound 3c

Fig S116. ESI-MS spectrum of the compound 3d

Fig S118. ESI-MS spectrum of the compound 3f

Fig S119. ESI-MS spectrum of the compound 3g

Fig S120. ESI-MS spectrum of the compound 3h

Fig S121. ESI-MS spectrum of the compound 3i

Fig S122. ESI-MS spectrum of the compound 3j

Fig S123. ESI-MS spectrum of the compound 31

Fig S124. ESI-MS spectrum of the compound 3m

Fig S125. ESI-MS spectrum of the compound **3n**

Fig S126. ESI-MS spectrum of the compound 30

Fig S127. ESI-MS spectrum of the compound **3p**

Fig S128. ESI-MS spectrum of the compound 3q

Fig S129. ESI-MS spectrum of the compound 3s

Fig S130. ESI-MS spectrum of the compound 3t

Fig S131. ESI-MS spectrum of the compound **3u**

Fig S132. NMR spectrum of the crude mixture after 1h of reaction time

Fig S133. ESI-MS spectrum of the TEMPO-azide adduct

Fig S134. ESI-MS spectrum of the hydroquinone-azide adduct

NMR time-course experiment:

The aliquots of the crude reaction mixture at different time points were filtered through a small pad of silica, and their NMR spectra were recorded and are presented in Fig S135. The signals present in the aromatic region are briefly discussed in the manuscript. At 2.1 ppm, the methyl group of the substrate and product get combined in the spectra that are recorded after 20 min of the reaction due to their similar chemical environment. As a result, they appear as a slightly broad peak with splitting at the top of the signal indicating that it corresponds to two methyl units. This is further justified by the corresponding number of protons i.e., six, for the broad peak, as seen in Fig S137 – S139.

The signals corresponding to the ligand of the copper complex that is present in the crude mixture are also seen in the spectra at different time points in the range 7.1 - 8.0 ppm. This region is individually measured to see the number of protons and found that it is in agreement with the number of aromatic protons present in the ligand. The proton of the -CH unit of the ligand is also observed at 5.24 ppm at all the time points. Weak signals are observed around 2.4 and 3.7 ppm for the methylene protons present in the morpholine unit of the ligand. The signals at 3.31 ppm and 4.86 ppm correspond to the residual solvent and water from MeOD, respectively. The signal at 2.01 ppm corresponds to the reaction solvent, i.e., CH₃CN.

Fig S135. NMR spectrum of the crude mixture at different time points (Only the aromatic region is displayed to clearly visualise the progress of the reaction)

Fig S136. NMR spectrum of the crude mixture at 0 min

Fig S137. NMR spectrum of the crude mixture at 20 min

Fig S139. NMR spectrum of the crude mixture at 60 min

Parameters	Values
receptor	7tll.pdbqt
exhaustiveness	8
center_x	14.4847
center_y	-0.2238
center_z	15.2147
size_x	62.6546332169
size_y	65.171065979
size_z	39.70264884

Table S5 Grid box parameters for the docking study

Table S6 Results of molecular docking of triazoles against SARS-CoV-2 Omicron P132H

Compound	Binding	Interacting amino acids
	energy	
	(kcal/mol)	
3 a	-7.0	HIS41, MET165, LEU167, GLU166, PRO168, THR190, GLN192,
		GLN189, ARG188, ASP187, HIS164
3b	-7.2	THR190, GLN189, GLN192, ARG188, ASP187, HIS164, HIS41,
		MET165, LEU167, GLU166, PRO168
3c	-6.9	ASP164, THR190, GLN192, LEU167, GLU166, PRO168, ARG188,
		MET165, GLN189, HIS41
3d	-7.2	HIS41, MET165, LEU167, GLU166, PRO168, GLN192, THR190,
		ARG188, GLN189, ASP187, HIS164
3e	-7.4	HIS41, MET165, ASP187, GLU166, LEU167, PRO168, GLN192,
		THR190, ARG188, GLN189, HIS 164
3f	-7.4	HIS41, MET165, GLU166, LEU167, PRO168, ALA191, THR190,
		GLN192, ARG188, GLN189, ASP187, HIS164
3g	-7.2	HIS41, MET165, GLN189, PRO168, GLU166, LEU167, THR190,
		GLN192, ARG188, ASP187, HIS164
3h	-7.4	GLY109, GLN110, ASN151, ASP295, THR292, ILE249, PRO293,
		VAL202, HIS246
3i	-7.1	HIS41, ASP187, HIS164, GLU166, LEU167, PRO168, THR190,
		GLN192, GLN189, ARG188, MET165
3j	-7.2	HIS41, MET165, GLN189, PRO168, GLU166, THR190, LEU167,
		ARG188, GLN192, ASP187, HIS164
3k	-7.2	HIS41, GLU166, GLN189, MET49, MET165, LEU167, ALA191,
		PRO168, THR190, ARG188, GLN192
31	-6.9	HIS 41, THR190, GLN192, GLN189, ARG188, MET165, ASP187,
		HIS164, GLU166, LEU167, PRO168
3m	-6.9	HIS41, MET165, MET49, CYS145, HIS172, HIS163, LEU141,
		SER144, PHE140, HIS164, GLU166, GLN189
3n	-7.5	GLN189, MET165, LEU27, THR25, GLY143, SER144, CYS145,
		HIS163, HIS164, HIS41, ARG188
30	-7.6	HIS41, MET165, LEU167, GLU166, PRO168, ALA191, THR190,
		GLN189, GLN192, ARG188, ASP187, HIS164
3p	-6.9	THR292, PRO293, ILE249, VAL202, GLY109, HIS246, ILE200,
		GLU240, PRO108
3q	-7.1	HIS41, MET165, ASP187, GLN189, ARG188, GLN192, THR190,
		HIS164, GLU166, LEU167, PRO168
3r	-7.1	HIS41, ASP187, MET165, ARG188, GLN189, GLN192, THR190,

		PRO168, GLU166, LEU167, HIS164
3s	-7.1	HIS41, MET165, GLN189, PRO168, HIS164, ASP187, ARG188,
		GLN192, THR190, LEU167
3t	-7.2	HIS41, HIS164, ASP187, ARG188, MET165, THR190, GLN192,
		GLN189, PRO168, GLU166, LEU167
3 u	-7.4	HIS41, MET165, GLN189, PRO168, HIS164, ASP187, ARG188,
		GLN192, THR190, GLU166, LEU167

References

- 1. C. Tang and N. Jiao, J. Am. Chem. Soc., 2012, 134, 18924–18927.
- 2. Y. Fan, W. Wan, G. Ma, W. Gao, H. Jiang and S. Zhu and J. Hao, *Chem. Commun.*, 2014, **50**, 5733–5736.
- 3. F. Lin, L. Yujie, L. Xinyao, S. Song and J. Ning, Acta Chimica Sinica, 2019, 77, 906.
- 4. M. Shen, and T. G. Driver, Organic letters, 2008, 10, 3367-3370.
- 5. H. Fang, D. Yandong, G. Jingyan, C. Mohit, S. Hongyan, Z. Pengfei, Z. Yuguo and Z. Qing, *The Journal of Organic Chemistry*, 2017, **82**, 11212-11217.
- A. D. Vecchio, C. Fabien, C. Arnaud, L. Olivier, H. Kaisa, H. Christer, S. Magnus, C. Nathalie, K. Pascal, K. Bertrand, T. Frédéric and A. Davide, *Angewandte Chemie*, 2018, 130, 9892-9896.
- 7. B. Saha, S. Sharma, D. Sawant and B. Kundu, Tetrahedron, 2008, 64, 8676-8684.
- 8. K. Bouchemella, K. Fauché, B. Anak, L. Jouffret, M. Bencharif and F. Cisnetti, *New Journal of Chemistry*, 2018, **42**, 18969-18978.