Electronic Supplementary Information

Porous Zn-MOF with two diverse cages synthesized using functionalized biphenyl tricarboxylic acid: CO₂ selective adsorption and fixation

Nan An,^a Lu-Lu Ma,^a Fan Yang,^a Wen-Yan Zhang, ^a Guo-Ping Yang,^{*a} and Yao-Yu Wang^{*a}

^aKey Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.

*E-mail: ygp@nwu.edu.cn; wyaoyu@nwu.edu.cn

Materials and general methods.

The powder X-ray diffraction (PXRD) data were tested on Bruker D8 ADVANCE X-ray powder diffractometer. Thermogravimetric analyses (TGA) were performed on the NETZSCH STA 449C microanalyzer thermal analyzer under a N₂ atmosphere. The infrared spectra (IR) data were tested in the range of 400-4000 cm⁻¹ on Bruker Equinox-55 FT-IR spectrometer. Gas sorption isotherms were performed on an ASAP 2020 M sorption equipment using 30mg of MOFs. ¹H NMR spectrograms were gained on a Bruker Ascend 400 (400 MHz) spectrometer.

Complex 1				
Zn(1)-Zn(1)#1	2.778(4)	O(2)#6-Zn(2)-O(7)#7	102.4(6)	
Zn(1)-O(1)	1.982(9)	O(3)-Zn(2)-Zn(2)#5	122.4(5)	
Zn(1)-O(1)#2	1.982(9)	O(3)-Zn(2)-Zn(2)#4	122.6(4)	
Zn(1)-O(4)#1	1.992(9)	O(3)-Zn(2)-O(5)	107.5(7)	
Zn(1)-O(4)#3	1.992(9)	O(3)-Zn(2)-O(7)#7	116.8(7)	
Zn(1)-O(6)	2.083(12)	O(5)-Zn(2)-Zn(2)#4	36.0(2)	
Zn(2)-Zn(2)#4	3.132(3)	O(5)-Zn(2)-Zn(2)#5	36.0(2)	
Zn(2)-Zn(2)#5	3.132(4)	O(7)#7-Zn(2)-Zn(2)#5	118.3(5)	
Zn(2)-O(2)#6	1.903(11)	O(7)#7-Zn(2)-Zn(2)#4	75.1(4)	
Zn(2)-O(3)	1.921(13)	O(7)#7-Zn(2)-O5	110.8(5)	
Zn(2)-O(5)	1.935(6)	O(3A)#5-Zn(2A)-O(5)	97(3)	
Zn(2)-O(7)#7	1.931(13)	O(3A)#5-Zn(2A)-O(7A)#8	140(4)	
Zn(2A)-O(3A)#5	1.98(9)	O(5)-Zn(2A)-O(7A)#8	95(3)	
Zn(2A)-O(5)	2.00(3)	O(8)-Zn(3)-O(5)	112.1(4)	
Zn(2A)-O(7A)#8	2.37(10)	O(8)#5-Zn(3)-O(5)	112.1(4)	
Zn(3)-O(5)	1.957(17)	O(8)#4-Zn(3)-O(5)	112.1(4)	
Zn(3)-O(8)4#	1.940(10)	O(8)#4-Zn(3)-O(8)	106.7(5)	
Zn(3)-O(8)5#	1.940(10)	O(8)#4-Zn(3)-O(8)5	106.7(4)	
Zn(3)-O(8)	1.940(10)	O(8)#5-Zn(3)-O(8)	106.7(5)	
Zn(3A)-O(2A)#6	2.01(10)	O(2A)#8-Zn(3A)-O(2A)#7	116.5(19)	
Zn(3A)-O(2A)#8	2.01(10)	O(2A)#6-Zn(3A)-O(2A)#8	116.5(19)	
Zn(3A)-O(2A)#7	2.01(10)	O(2A)#6-Zn(3A)-O(2A)#7	116.5(19)	
Zn(3A)-O(5)	1.94(4)	O(5)-Zn(3A)-O(2A)#8	101(3)	
O(1)-C(4)	1.221(18)	O(5)-Zn(3A)-O(2A)#7	101(3)	
O(2)-C(10)	1.256(19)	O(5)-Zn(3A)-O(2A)#6	101(3)	
O(2A)-C(10)	1.46(11)	C(4)-O(1)-Zn(1)	122.1(8)	
O(3)-C(14)	1.20(2)	C(10)-O(2)-Zn(2)#9	127.2(10)	
O(3A)-C(14A)	1.21(3)	C(10)-O(2A)-Zn(3A)#10	107(5)	
O(4)-C(4)	1.219(17)	C(14)-O(3)-Zn(2)	135.5(13)	

Table S1. Selected bond lengths (Å) and bond angles (°) for 1.

O(7)-C(10)	1.253(18)	C(4)-O(4)-Zn(1)#2	125.7(9)
O(7A)-C(10)	1.61(10)	Zn(2)-O(5)-Zn(2)#5	108.1(5)
O(8)-C(14)	1.28(2)	Zn(2)#4-O(5)-Zn(2)#5	108.1(5)
O(8A)-C(14A)	1.20(3)	Zn(2)-O(5)-Zn(2)#4	108.1(5)
O(1)#1-Zn(1)-Zn(1)#2	83.2(3)	Zn(2)-O(5)-Zn(2A)#5	69.5(9)
O(1)-Zn(1)-Zn(1)#2	83.2(3)	Zn(2)#5-O(5)-Zn(2A)#5	177.4(9)
O(1)#1-Zn(1)-O(1)	166.5(6)	Zn(2)#4-O(5-)Zn(2A)#5	73.8(10)
O(1)-Zn(1)-O(4)#3	89.0(4)	Zn(2)#4-O(5)-Zn(2A)#4	177.4(9)
O(1)#1-Zn(1)-O(4)#2	89.0(4)	Zn(2)-O(5)-Zn(2A)#4	73.8(10)

Symmetry transformations used to generate equivalent atoms: #1 +x, 1-y, -z; #2 1-x, 1-y, +z; #3 1-x, +y, -z; #4 1-x, +y, 1-z,; #5 +x, 1-y, 1-z; #6 1/2-x, 3/2-y, 1/2+z; #7 1/2+x, -1/2+y, 1/2+z; #8 1/2+x, 3/2-y, 1/2-z; #9 3/2-x, -1/2+y, 1/2-z; #10 -1/2+x, 3/2-y, 1/2-z; #11 -1/2+x, -1/2+y, 1/2+z.

Fig. S1 The FT-IR spectra of 1 (1641=carbon carbon double bond, 1554=benzene ring, 1427, 1382=hydrocarbon bond).

Fig. S2 (a) Coordination environment diagram of 1. (b) The coordination modes of L³⁻ in 1.

Fig. S3 The topological net for 1.

Fig. S4 PXRD patterns of 1, 1a and 1 at different common solvents (.

Fig. S5 The TGA plots of $\boldsymbol{1}$ and $\boldsymbol{1a}$ under N_2 environment.

Fig. S6 CO_2 reabsorption experiments at different temperatures: 273 K (a) and 298 K (b)

Calculation of sorption heat for gas using Virial 2 model

$$\ln P = \ln N + 1/T \sum_{i=0}^{m} a_i N^i + \sum_{i=0}^{n} b_i N^i$$
$$Q_{st} = -R \sum_{i=0}^{m} a_i N^i$$

Above virial expression was used to fit the combined isotherm data for 1a at 273.15 and 298 K, where P is the pressure, N is the adsorbed amount, T is the temperature, a_i and b_i are virial coefficients, and m and N are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and R is the universal gas constant.

Fig. S7 (a) C_2H_2 , a0 = -397.0335, a1 = 40.95674, a2 = -47.48092, a3 = -0.02085, a5 = -4.10052E-6, b0 = 1.92079, b1= 0.26785, b2=-0.00366, Chi^2 = 0.00443, R^2 = 0.99911. (b) CH₄, a0 = -2470.79298, a1 = 36.70724, a2 = 187.05099, a3=-58.89557, a4=6.24143, b0 = 13.72709, b1=-1.59287, b2=0.20751, Chi^2 = 0.08251, R^2 = 0.97016. (c) CO₂, a0 = -3667.28881, a1 = 41.78032, a2 = -0.03396, a3=-0.01236, a4=1.61371E-4, a5=-7.29678E-7, b0 = 13.94246, b1=-0.12791, b2=0.00128, Chi^2 = 3.84946E-4, R^2 = 0.99987.

Selectivity prediction via IAST

The experimental isotherm data for pure gas A, and gas B were fitted at 298 K using a dual Langmuir-Freundlich (L-F) model (Figure S7):

$$q = \frac{\mathbf{a}_1 * \mathbf{b}_1 * p^{c_1}}{1 + \mathbf{b}_1 * p^{c_1}} + \frac{\mathbf{a}_2 * \mathbf{b}_2 * p^{c_2}}{1 + \mathbf{b}_2 * p^{c_2}}$$

Where q and p are adsorbed amounts and the pressure of component i, respectively. The adsorption selectivities for binary mixtures of gas A/gas B, defined by

$$\mathbf{S}_{i/j} = \frac{x_i * y_j}{x_i/y_j}$$

were respectively calculated using the Ideal Adsorption Solution Theory (IAST) of Myers and Prausnitz. Where x_i is the mole fraction of component *i* in the adsorbed phase and y_i is the mole fraction of component i in the bulk.

Fig. S8 (a) C₂H₂, a1 = 193.65101, b1 = 5.52032E-4, c1 = 0.63093, Chi² = 2.88567E-4, R² = 0.99929; (b) CH₄, a1 = 1.38534, b1 = 0.0036, c1 = 0.99494, Chi² = 4.61392E-6, R² = 0.099967; (c) CO₂, a1 = 5.21952, b1 = 0.00897, c1 = 0.76415, Chi² = 3.44731E-5, R² = 0.99976.

Scheme S1 CO₂ cycloaddition equation.

Fig. S9 ¹H NMR spectrum of 4-bromomethyl -1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 1).

Fig. S10 ¹H NMR spectrum of 4-bromomethyl -1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 2).

Fig. S11 ¹H NMR spectrum of 4-bromomethyl -1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 3).

Fig. S12 ¹H NMR spectrum of 4-bromomethyl -1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 4).

Fig. S13 ¹H NMR spectrum of 4-bromomethyl -1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 5).

Fig. S14 ¹H NMR spectrum of 4-bromomethyl -1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 6).

Fig. S15 ¹H NMR spectrum of 4-cloromethyl-1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 7).

Fig. S16 ¹H NMR spectrum of 3-butoxy-1,2-propylene carbonate in CDCl₃. (Table 2, entry 8).

Fig. S17 ¹H NMR spectrum of styrene carbonate in CDCl₃. (Table 2, entry 9).

Fig. S18 ¹H NMR spectrum of 4-(phenoxymethyl)-1,3-dioxolan-2-one in CDCl₃. (Table 2, entry 10).

Fig. S19 ¹H NMR spectrum of benzo[1,3]dioxol-2-one with 1. (The solvent is CDCl₃).