SUPPORTING INFORMATION

Reverse Voltage Pulse Deposition of Porous Polyaniline/Mn-Co Sulfide Composite Cathode Material for Modified Zn-ion Hybrid Supercapacitor

Duong V. Thiet^a, Doan T. Tung^{b,c,*}, Le T. T. Tam^{b,c}, Ngo T. Dung^b, Le T. Tam^d, Pham T. Nam^b, Nguyen T. T. Trang^b, Dimitra Vernardou^e, Top K. Le^{f,g}, Nguyen V. Tam^h, Tran D. Lam^{b,c} and Le T. Lu^{b,c,*}

a. Faculty of Mechanical Engineering, Hanoi University of Industry, Tu Liem District, Hanoi, Vietnam

b. Institute for Tropical Technology-Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam.

c. Graduate University of Science and Technology-VAST, 18 Hoang Quoc Viet, Hanoi, Vietnam.

d. Vinh University, 182 Le Duan, Vinh City, Nghe An, Province 43000, Vietnam.

e. Department of Electrical and Computer Engineering, School of Engineering, Hellenic Mediterranean University, 71410 Heraklion, Greece.

f. Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam.

g. Vietnam National University, Ho Chi Minh City 700000, Vietnam.

h. Defect Control Group, Samsung Display Vietnam Co., Ltd, Yen Phong Industrial Zone, Yen Trung, Yen Phong, Bac Ninh, Vietnam.

Supplementary Figures

Fig. S1. Potential and current graphs of electrodeposition method (a) and electroplating method (b).

Fig. S2. XRD pattern of MCS/PANi electrode.

Fig. S3. Log I (A/g) vs log v (mV/s) (a), b factor vs some potential value (b,c), CV curve with capacitive contribution at scan rate of 50 mV/s (d) and the percentages of capacitive and diffusion contributions at different scan rates (e).

Supplementary Tables

Materials	Method	Electrolyte Working Potential (V		Specific capacitance	Reference
MCS-PANi	Electrodeposition (Reverse Voltage Pulse)	ZnSO₄ 1M and MnSO₄ 0.1M	-1 to 0.9	1048.8 F/g (at CV scan rate of 5 mV/s)	This work
MnCoS	CVD	6M KOH	-0.2 to 0.6	1938 F/g (at 5 A/g)	[S1]
MnCoS	Hydrothermal	3M NaOH	0 to 0.4	992 F/g (at 1 A/g)	[S2]
Ni-Co-Zn-S	Hydrothermal	3.5M KOH	0 to 0.5	825 F/g (at 1 A/g)	[S3]
Zn-Ni-Co-S- rGO	Electrodeposition (CV)	2М КОН	0 to 0.6	1302 F/g (at 0.5 A/g)	[S4]
FeCoS-rGO- PPy	Electrodeposition (Const V)	ЗМ КОН	-0.1 to 0.55	3178 F/g (at 2 A/g)	[\$5]
$NiCo_2S_4 - C$ quantum dot	Hydrothermal	2М КОН	0 to 0.5	124.4 mAh/g (at 2 A/g)	[S6]
Zn-Co-S	Hydrothermal	6М КОН	-0.5 to 0.4	578.6 F/g (at 1 A/g)	[\$7]
FeS _x	Hydrothermal	$1M Na_2SO_4$	-0.95 to 0	730.52 mF/cm ² (at 1 mA/cm ²)	[\$8]
MnCo ₂ S ₄	Hydrothermal	1М КОН	0 to 1 V	1980 F/g (at 1 A/g)	[\$9]
MnCo ₂ S ₄	Solvothermal	3 М КОН	0 to 0.4	780.8 mF/cm ² (at 1 mA/cm ²)	[S10]

Table S1. Electrochemical performance and synthesis methods of differenttransition metal sulfides-based electrodes

Cathode	Anode	Electrolyte	Working Potential (V)	Capacitance	Energy density	Durability, stability	Ref
MCS- PANi/graphite paper	hierarchical micro- flower-like Zn	ZnSO₄ 1M and MnSO₄ 0.1M	0 to 2	1048.8 F/g (at CV scan rate of 5 mV/s)	216 Wh/kg at a power density of 4610 W/kg	98,3 % after 11232 cycles (50 A/g)	This work
Flower-like carbon	Zn foam	ZnSO₄ (aq)	0.1–1.8	132 mAh/g (1 A/g)	117.5 Wh/kg	90% after 10,000 cycles (5 A/g)	[S11]
Carbon nano sponge	Zn foil	Zn(CF ₃ SO ₃) ₂ + AN	0–1.8	226 F/g (0.1 A/g)	91.5 Wh/kg	Nearly 100% after 60,000 cycles (10 A/g)	[S12]
S-doped 3D PC	Zn foil	ZnSO₄ (aq)	0.2–1.8	123.8 mAh/cm ³ (0.2 A/g)	162.6 Wh/kg	96.8% after 18,000 cycles (10 A/g)	[S13]
P-doped PC	Zn foil	ZnSO₄ (aq)	0.1–1.8	143.7 mAh/g (1 A/g)	129.3 Wh/kg	92% after 10,000 cycles (5 A/g)	[S14]
Graphene Hydrogel (GH)	Zn foil	ZnSO₄ (aq)	0.2–1.8	99.3 mAh/g (0.2 A/g)	76.2 Wh/kg	90% after 10,000 cycles (15 A/g)	[S15]
3D Mxene-rGO aerogel	Zn foil	ZnSO₄ (aq)	0.2–1.6	128.6 F/g (0.4 A/g)	34.9 Wh/kg	95% after 75,000 cycles (5 A/g)	[S16]
2D/2D LDH/V2CTx MXene	Zn plate	ZnSO ₄ + MnSO ₄ (aq)	0.9–1.85	372.9 mAh/g (0.2 A/g)	368.7 Wh/kg	95.7% after 600 cycles (1 A/g)	[\$17]

Table S2. Electrochemical performance of various electrodes for ZHSCs

3D graphene@PANI	Zn foil	ZnSO₄ (aq)	0.4–1.6	154 mAh/g (0.1 A/g)	205 Wh/kg	80.5% after 6000 cycles (0.1 A/g)	[S18]
Few-layer phosphorene	Zn plate	Zn(CF ₃ SO ₃) ₂ + LiTFSI- PAM	0.8–2.2	304 F/g (0.2 A/g)	315.6 Wh/kg	Nearly 100% after 5000 cycles (0.5 A/g)	[S19]
Few-layer siloxene	Zinc plate	Zn(CF ₃ SO ₃) ₂ + LiTFSI	0–1.8	6.86 mF/cm ² (0.05 mA/cm ²)	10.66 mJ/cm ²	94.3% after 16,000 cycles (0.05 mA/cm ²)	[\$20]

Supplementary References

- [S1] M. Yu, X. Li, Y. Ma, R. Liu, and J. Liu, Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors. Appl. Surf. Sci. 396, (2017) 1816.
- [S2] Y. Zhao, Z. Shi, H. Li, and C.-A. Wang, Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes. J. Mater. Chem. A 6, (2018) 12782– 12793.
- [S3] V. Vignesh and R. Navamathavan, Spherical-Like Ball-by-Ball Architecture of Ni-Co-Zn-S Electrodes for Electrochemical Energy Storage Application in Supercapacitors, J. Electrochem. Soc. 164, (2017) 434.
- [S4] U. Evariste, G. Jiang, B. Yu, Y. Liu, Z. Huang, Q. Lu, and P. Ma, 34, 2445 (2019).
- [S5] A. Karimi, I. Kazeminezhad, L. Naderi, and S. Shahrokhian, Construction of a ternary nanocomposite, polypyrrole/Fe-Co sulfide-reduced graphene oxide/nickel foam, as a novel binderfree electrode for high-performance asymmetric supercapacitors. J. Phys. Chem. C 124, (2020) 4393.
- [S6] Y. Zhu, J. Li, X. Yun, G. Zhao, and P. Ge, Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, (2020) 18.
- [S7] X. Yu, W. Zhang, L. Liu, and Y. Fautrelle, High magnetic fieldengineered bunched Zn-Co-S yolk-shell balls intercalated within S, N Codoped CNTs/graphene films for free-standing supercapacitors. ACS Appl. Mater. Interf. 1, (2020) 12.
- [S8] K.K. Upadhyay, T. Nguyen, T.M. Silva, M.J. Carmezim, M.F. Montemor, Pseudocapacitive behaviour of FeSx grown on stainless steel up to 1.8 V in aqueous electrolyte, J. Energy Storage 26 (2019) 100949.
- [S9] P.M. Anjana, S.R. Sarath Kumar, R.B. Rakhi, MnCo₂S₄ nanoflowers directly grown over nickel foam as cathode for high-performance asymmetric hybrid supercapacitors, Journal of Energy Storage, 61 (2023) 106672.
- [S10] M. Fu, Q. Zhuang, H. Yu, W. Chen, MnCo₂S₄ nanosheet arrays modified with vermicular polypyrrole for advanced free-standing flexible electrodes, Electrochimica Acta, 447 (2023) 142167.

- [S11] H.L. Fan, S.X. Zhou, Q.Y. Li, G.M. Gao, Y.R. Wang, F. He, G.Z. Hu, X. Hu, Hydrogen-bonded frameworks crystals-assisted synthesis of flower-like carbon materials with penetrable meso/macropores from heavy fraction of bio-oil for Znion hybrid supercapacitors, J. ColloidInterface Sci. 600 (2021) 681–690.
- [S12] H. Zhou, C. Liu, J.C. Wu, M. Liu, D. Zhang, H. Song, X. Zhang, H. Gao, J. Yang, D. Chen, Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes, J. Mater. Chem. A 7 (2019) 9708– 9715.
- [S13] D. Wang, S. Wang, Z. Lu, S-doped 3D porous carbons derived from potassium thioacetate activation strategy for zinc-ion hybrid supercapacitor applications, Int. J. Energy Res. 45 (2021) 2498–2510.
- [S14] H.L. Fan, S.X. Zhou, Q.F. Chen, G.M. Gao, Q.F. Ban, Z.X. Xu, F. He, G.Z. Hu, X. Hu, Phosphorus in honeycomb-like carbon as a cathode boosting pseudocapacitive properties for Zn-ion storage, J. Power Sources 493 (2021) 229687.
- [S15] Y. Zhu, X. Ye, H. Jiang, J. Xia, Z. Yue, L. Wang, Z. Wan, C. Jia, X. Yao, Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes, J. Power Sources 453 (2020) 227851.
- [S16] Q. Wang, S. Wang, X. Guo, L. Ruan, N. Wei, Y. Ma, J. Li, M. Wang, W. Li, W. Zeng, MXenereduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life, Adv. Electron. Mater. 5 (2019) 1900537.
- [S17] Y. Zhang, J. Cao, J. Li, Z. Yuan, D. Li, L. Wang, W. Han, Self-assembled cobaltdoped NiMnlayered double hydroxide (LDH)/V2CTx MXene hybrids for advanced queous electrochemical energy storage properties, Chem. Eng. J. 430 (2022) 132992.
- [S18] J.W. Han, K. Wang, W.H. Liu, C. Li, X.Z. Sun, X. Zhang, Y.B. An, S. Yi, Y.W. Ma, Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell, Nanoscale 10 (2018) 13083–13091.
- [S19] Z. Huang, A. Chen, F. Mo, G. Liang, X. Li, Q. Yang, Y. Guo, Z. Chen, Q. Li, B. Dong, C. Zhi, Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors, Adv. Energy Mater. 10 (2020) 2001024.
- [S20] Q. Guo, Y. Han, N. Chen, L. Qu, Few-layer siloxene as an electrode for superior high-rate zinc ion hybrid capacitors, ACS Energy Lett. 6 (2021) 1786–1794.