Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

Y-doped P2-Na_{0.6}Li_{0.11}Fe_{0.27}Mn_{0.62}O₂ cathode with improved high-rate capability and cycling stability for Na-ion batteries

Ming-Hui Cao*^a, Ren-Yan Li^a, Fen-Fen Huang^a, Xin-Yin Cai^b, Miao Cui^a, Shi-Ya Lin^a, Jing-Yang Tian

^a, Yuan-Ping Jiang ^a, Zulipiya Shadike^{*b} and Zheng-wen Fu^{*c}

^a Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturering and Devices, East China University of Technology, Nanchang, 330013, China

E-mail: mhcao@ecut.edu.cn

^b Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

E-mail: zshadike@sjtu.edu.cn

^c Department of Chemistry, Fudan University, Shanghai, 200433, China E-mail: zwfu@fudan.edu.cn

 Table S1. Stoichiometry from inductively coupled plasma-atomic emission spectrometry (ICP-AES)

 results of NLFM.

Elements	Content(mg/kg)	mol ratio
Na	13.70	0.59(7)
Li	0.76	0.10(8)
Fe	15.28	0.27(4)
Mn	34.10	0.61(8)

 Table S2. Stoichiometry from inductively coupled plasma-atomic emission spectrometry (ICP-AES)

 results of NLFMY-1.

Elements	Content(mg/kg)	mol ratio
Na	13.68	0.59(5)
Li	0.77	0.10(9)
Fe	14.96	0.26(7)
Mn	33.90	0.61(6)
Y	0.43	0.004(8)

 Table S3. Stoichiometry from inductively coupled plasma-atomic emission spectrometry (ICP-AES)

 results of NLFMY-2.

Elements	Content(mg/kg)	mol ratio
Na	13.75	0.59(8)
Li	0.78	0.11(2)
Fe	14.46	0.25(8)
Mn	33.83	0.61(5)
Y	0.86	0.009(7)

 Table S4. Stoichiometry from inductively coupled plasma-atomic emission spectrometry (ICP-AES)

 results of NLFMY-3.

Elements	Content(mg/kg)	mol ratio
Na	13.87	0.60(3)
Li	0.75	0.10(7)
Fe	14.13	0.25(2)
Mn	34.27	0.62(3)
Y	1.73	0.019(4)

Sample	Atom	Site	Х	У	Z	Occupancy	
	Mn	2a	0	0	0	0.62(3)	
	Fe	2a	0	0	0	0.265(4)	
	Li	2a	0	0	0	0.112(3)	
NLFMY-1	Y	2a	0	0	0	0.005(2)	
	Na1	2b	0	0	0.25	0.298(4)	
	Na2	2d	0.3333	0.6667	0.75	0.302(6)	
	Ο	4f	0.3333	0.6667	0.0872	1	
<i>P63/mmc</i> : $a = b = 2.8876(3)$ Å $c = 11.2193(4)$ Å V= 81.02(2) Å ³							
$R_p = 2.65\%$ $R_{wp} = 3.39\%$ $GOF(\chi^2) = 0.5284$							

Table S5. Refined crystallographic parameters of NLFMY-1 with the Rietveld method. S.G. *P63/mmc*, a = b = 2.88(7) Å, c = 11.21(9) Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, $R_{wp} = 3.39\%$, $\chi^2 = 0.5284$.

Rietveld refinement was conducted using hexagonal space group P63/mm and by placing Mn, Fe, Li, Y ions in octahedral sites of the transition-metal layer and Na ions at the two trigonal prismatic sites in the alkaline metal layer. ~0.5% of Y³⁺ occupies the octahedral site and has no occupancy in the Na layer. The refinement shows excellent goodness of fit with this model (GOF(χ^2) = 0.5284), which confirms the proposed structural model.

Table S6. Refined crystallographic parameters of NLFMY-2 with the Rietveld method. S.G. *P63/mmc*, a = b = 2.89(1) Å, c = 11.24(7) Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, $R_{wp} = 3.37\%$, $\chi^2 = 0.5032$.

Sample	Atom	Site	Х	у	Z	Occupancy	
	Mn	2a	0	0	0	0.62(3)	
	Fe	2a	0	0	0	0.26(7)	
	Li	2a	0	0	0	0.113(4)	
NLFMY-2	Y	2a	0	0	0	0.01(1)	
	Na1	2b	0	0	0.25	0.297(5)	
	Na2	2d	0.3333	0.6667	0.75	0.303(4)	
	Ο	4f	0.3333	0.6667	0.0872	1	
<i>P63/mmc</i> : $a = b = 2.8914(2)$ Å $c = 11.2478(1)$ Å $V = 81.43(5)$ Å ³							
	$R_p =$	2.65%	$R_{wp} = 3.37\%$	$GOF(\chi^2)$	= 0.5032		

Rietveld refinement was conducted using hexagonal space group P63/mm and by placing Mn, Fe, Li, Y ions in octahedral sites of the transition-metal layer and Na ions at the two trigonal prismatic sites in the alkaline metal layer. ~1% of Y³⁺ occupies the octahedral site and has no occupancy in the Na layer. The refinement shows excellent goodness of fit with this model (GOF(χ^2) = 0.5032), which confirms the proposed structural model.

Table S7. Refined	crystallographic	parameters of	of NLFMY-3	with the	Rietveld	method.	S.G.	P63/mmc	:, a
= b = 2.89(7) Å, $c =$	= 11.21(7) Å, α =	$\beta = 90^{\circ}, \gamma =$	$120^{\circ}, R_{wp}=3$	$.65\%, \chi^2$	= 0.7043.				

Sample	Atom	Site	Х	у	Z	Occupancy
	Mn	2a	0	0	0	0.62(3)
	Fe	2a	0	0	0	0.25(8)
	Li	2a	0	0	0	0.111(7)
NIL EMAY 2	Y1	2a	0	0	0	0.0162(3)
INLFINI I-S	Na1	2b	0	0	0.25	0.298(8)
	Na2	2d	0.3333	0.6667	0.75	0.258(2)
	Y2	2d	0.3333	0.6667	0.75	0.0039(2)
	0	4f	0.3333	0.6667	0.0872	1
	P63/mmc : a =	= b = 2.897	3(6) Å c = 1	1. 2176(2) Å	A V = 80.98(3)	3) Å ³
	$R_p =$	2.84%	$R_{wp} = 3.65\%$	$GOF(\chi^2)$	= 0.7043	

Rietveld refinement was conducted using hexagonal space group P63/mm and by placing Mn, Fe, Li, Y ions in octahedral sites of the transition-metal layer and Na ions at the two trigonal prismatic sites in the alkaline metal layer. ~1.6% of Y³⁺ occupies the octahedral site and ~0.4% of Y³⁺ enters the Na layer. The refinement shows excellent goodness of fit with this model (GOF(χ^2) = 0.7043), which confirms the proposed structural model.

Fig. S1. XRD patterns were collected for Na_{0.6}Li_{0.11}Fe_{0.27-x}Mn_{0.62}Y_xO₂ samples with different Y³⁺ doping amounts (x=0, 0.5%, 1%, 2%).

Fig. S2. Average discharge voltage vs. cycle number plot of NLFM and NLFMY-2.

Fig. S3. The charge and discharge voltage profiles with different current rate (0.1C-2C) for the NLFMY-2 electrode.

Fig. S4. The capacity contributions of Fe redox, Mn redox and O redox in the (a) NLFM and (b) NLFMY-2 electrodes during the initial two charging processes.