Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supplementary

An efficient mixed micellar strategy for the catalytic oxidation of benzyl alcohol by diperiodatoargentate(III) in aqueous media

Priya Karmakar^a, Sandip Kundu^a, Mousumi Layek^a, Kripasindhu Karmakar^a, Mandira Mitra^a, Arnab Mukherjee^b, Debasis Dhak^b, Ujjwal Mandal^{a,*}, Pintu Sar^{a,*}, Bidyut Saha^{a,*}

^aSurfactant Chemistry Laboratory, Department of Chemistry, The University of Burdwan, Burdwan-713104, West Bengal, India

^bDepartment of Chemistry, Sidho-Kanho-Birsha University, Purulia-723104, West Bengal, India

*Corresponding authors

Email addresses: <u>umandal@chem.buruniv.ac.in</u> (UM), <u>pintusar1@gmail.com</u> (PS), <u>b_saha31@redifmail.com</u> (BS), <u>bsaha@chem.buruniv.ac.in</u> (BS)

Figure no.	Figure caption								
Figure S1	The FT-IR spectrum of phenylhydrazone derivative of benzaldehyde.								
Figure S2	The ¹ H NMR spectrum of isolated oxidized product (benzaldehyde).								
Figure S3	CMC determination of CPC and Brij-35 surfactants by conductometric and fluorometric plots.								
Figure S4	The integrated ¹ H NMR spectrum of CPC/Brij-35 binary surfactants in D ₂ O solvent								
Figure S5	UV-Vis spectra of DPA in presence of surfactants only.								
Figure S6	Sequential scanned absorption spectra of DPA directed oxidation of benzyl alcohol in aqueous media at with varying Brij-35 surfactant concentration.								
Figure S7	Sequential scanned absorption spectra of DPA directed oxidation of benzyl alcohol in aqueous media at with varying CPC concentration.								
Figure S8	The representative plots for the studied oxidation kinetics in presence of mixed micelle.	9							
Figure S9	1 H NMR spectrum of benzyl alcohol itself and mixed surfactants with benzyl alcohol.								
Figure S10	re S10 The size of various micellar nanoaggregates.								
Table S1	Chemical shift values of CPC, Brij-35, and mixture of CPC and Brij-35	12							

Content

Figure S1. The FT-IR spectrum of phenylhydrazone derivative of isolated oxidized product.

Figure S2. ¹H NMR spectrum of isolated oxidized product.

Figure S3: The conductometric and fluorometric plots of CMC determination of CPC and Brij-35 surfactants.

Figure S4. The integrated ${}^{1}H$ NMR spectrum of CPC/Brij-35 binary surfactants in D₂O solvent.

Figure S5. UV-Vis spectra of DPA $[2.72 \times 10^{-2} \text{ mM}]$ alone and in presence of studied surfactants CPC [1 mM], and Brij-35 [1 mM].

Figure S6. Sequential scanned absorption spectra of DPA directed oxidation of benzyl alcohol in aqueous media at 3 min interval in presence of 1 mM Brij-35 (A), 2 mM Brij-35 (B), and 3 mM Brij-35 (C). Condition: [benzyl alcohol] = 2.72×10^{-1} mM, [DPA] = 2.72×10^{-2} mM, T = 30 °C.

Figure S7. UV-vis scanned absorption spectra of benzyl alcohol oxidation by DPA in presence of CPC surfactant at 3 min interval for 1 mM CPC (A), 2 mM CPC (B), and 2 min interval for 3 mM CPC (C). Condition: [benzyl alcohol] = 2.72×10^{-1} mM, [DPA] = 2.72×10^{-2} mM, T = 30 °C.

Figure S8. The representative plot of $-\ln(Abs)_{360}$ vs time for the studied oxidation kinetics in presence of mixed micelle constituted by CPC:Brij-35 having mole fraction ratio 3:1 (A), 1:3 (B), and 2:2 (C).

Figure S9: ¹H NMR spectrum of mixed surfactants with benzyl alcohol and benzyl alcohol itself respectively.

Figure S10. The size of micellar nanoaggregates of CPC (A) and Brij-35 (C) surfactants in aqueous media and the alteration of hydrodynamic diameter observed in presence of benzyl alcohol for CPC (B) and Brij-35 (D) surfactants.

Compositions	a-H's	b-H's	c-H's	d-H's	m-	bulk-H's	p-H's	q-H's	r-H's	s-H's	t-H's
					H's						
CPC					0.68	1.08-1.27	4.69	1.96	8.95	8.09	8.57
Brij-35	0.85	1.26	1.53	3.55-3.76							
CPC + Brij- 35	0.82	1.13- 1.36	1.53	3.40-3.66	0.82	1.13-1.36	4.15- 4.32	1.98	8.90	8.14	8.62

Table S1. ¹H NMR values of CPC, Brij-35, and mixture of CPC and Brij-35.