Supporting Information

Facil Topochemical Prepared Hierarchical Ni-Fe LDH Nanoflowers for

Electrochemical Oxygen Elution Reaction

Zairan Liu^a, Yifei Yang^a, Yuanming Deng^{a*}, Jiaoning Tang^a

^aShenzhen Key Laboratory of Polymer Science and Technology, Guangdong

Research, Center for Interfacial Engineering of Functional Materials, College of

Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China

*Corresponding author: Yuanming Deng, e-mail address: <u>ymdeng@szu.edu.cn;</u>

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

(a)	(b)	(c)	(d)	(e)
1 um	2.5 um	2.5 um	2.5 um	2.5 um
(f)	(g)	(h)	(i)	(j)
1 um	1 um	<u>1 um</u>	1 um	<u>1 um</u>
(k)	(1)	(m)	(n)	(0)
1 um	5 um	5 um	<u>5 um</u>	5 um
(p)	(q)	(r)	(s)	(t)
1 um	1 um	<u>1 um</u>	<u>1 um</u>	1 um

Figure S1 morphology and EDS mapping of precipitate obtained from coprecipitation of Ni²⁺ and Fe²⁺ by amine. (a-e) trolamine, (f-j) ammonium hydroxide, (k-o) triethylamine, and (p-t) morpholine

Sample from	trolamine	ammonium	triethylamine	morpholine
amines	hydroxide			
O(wt%)	40.21	47.37	40.68	42.10
Ni(wt%)	7.89	30.02	45.25	43.66
Fe(wt%)	51.91	22.62	14.06	14.24

Table S1 Chemical composition of sample obtained from amines by EDS

Figure S2 XRD of precipitate obtained from coprecipitation of Ni²⁺ and Fe²⁺ by amine. (a,e) trolamine, (b, f) ammonium hydroxide, (c, g) triethylamine, and (d,h) morpholine

(b)	(c)	(d)
<u>1 µm</u>	<u>1 µm</u>	<u> 1 µm </u>
-(1)	(g)	(b)
	<u>1 μm</u>	
(g) 1 µm	(k) 1 µm	(1) 1 µm
	(b) <u>1 μm</u> (f) <u>1 μm</u> (g)	(b) (c) 1 μm 1 μm (f) (g) 1 μm 1 μm (g) 1 μm

Figure S3 EDS Mapping (a-d)Ni_{7.5}Fe_{2.5}-LDH (e-h)Ni₇Fe₃-LDH (i-l)Ni₅Fe₅-LDH

Figure S4 The full XPS spectra of Ni_{7.5}Fe_{2.5}-LDH, Ni₇Fe₃-LDH, Ni_{6.7}Fe_{3.3}-LDH, Ni₅Fe₅-LDH.

Figure S5 Cyclic voltammograms in 1 M KOH solution measured in the non-Faradaic potential range of 0.10 V to 0.30 V vs. Hg/HgO at scan rates of 20 mV s⁻¹, 40 mV s⁻¹, 60 mV s⁻¹, 80 mV s⁻¹, 100 mV s⁻¹, 120 mV s⁻¹ 140 mV s⁻¹, respectively (a) Ni_{7.5}Fe_{2.5}-LDH (b) Ni₇Fe₃-LDH (c) Ni_{6.7}Fe_{3.3}-LDH (d) Ni₅Fe₅-LDH

For the estimation of ECSA, a specific capacitance (C_s) value $C_s=0.040$ mF cm⁻² in 1 M NaOH solution is adopted from a previous report[1]. Cyclic voltammograms in 1 M KOH solution measured in the non-Faradaic potential range of 0.10 V to 0.30 V at scan rates of 20 mV s⁻¹, 40 mV s⁻¹, 60 mV s⁻¹, 80 mV s⁻¹, 100 mV s⁻¹, 120 mV s⁻¹ 140 mV s⁻¹, respectively. The slope obtained by $\Delta j = (j_a - j_c)$ at different scanning speeds at 0.2 V which are twice of the electric double layer capacitor. ECSA can be estimated according to the following equation: ECSA=C_{dl}/C_s (1) The calculation results: 9.725 cm² (Ni_{7.5}Fe_{2.5}-LDH), 5.575 cm² (Ni₇Fe₃-LDH), 8.225 cm²(Ni_{6.7}Fe_{3.3}-LDH), 5.075 cm²(Ni₅Fe₅-LDH).

Reference

 C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction, J. Am. Chem. Soc., 135 (2013) 16977-16987.