Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Rh(III)-Catalyzed Cascade Annulation Reaction of N,N-Dimethyl Enaminones with Iodonium Ylides to Give Substituted Isocoumarins.

Mingshuai Zhang,^a Longkun Chen,^a Donghan Liu,^a Zhuoyuan Liu,^a Jiuzhong Huang,^{*b} Xiang Li,^{*c}

Fuchao Yu,*a

^aFaculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650504, P. R. China.

^bSchool of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China.

Supporting Information

Table of Contents

1. General information.	2
2. General procedure	3
4. X-ray Structure and Data ³ of 3b (CCDC 2209204).	16
5. ¹ H NMR and ¹³ C NMR spectra for spectroscopic data	17
6. References and notes	78

1. General information.

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a DRX600 (¹H: 600 MHz, ¹³C: 150 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl₃ and DMSO-*d*₆ were used as solvent. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/MS TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

N,*N*-Dimethyl enaminones **1** were prepared according to the literature¹, iodonium ylides **2** were prepared according to the literature². Other reagents were purchased from Energy Chemical and Adamas-beta[®].

2. General procedure.

2.1 Typical procedure for the synthesis of isocoumarins 3.

N,*N*-Dimethyl enaminones **1** (0.5 mmol), iodonium ylides **2** (0.75 mmol), [Cp*RhCl₂]₂ (2.5 mol%), AgOAc (1.0 eq.) and HFIP (1.0 mL) were charged into a 10 mL Ace Glass pressure tubes under N₂, and the mixture was stirred at 40 °C for 12.0 h until *N*,*N*-dimethyl enaminones were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford isocoumarins **3**.

2.2 Gram-synthesis of isocoumarin 3a.

N,*N*-Dimethyl enaminones **1** (5.0 mmol), iodonium ylides **2** (7.5 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), AgOAc (1.0 eq.) and HFIP (10 mL) were charged into a 100 mL Ace Glass pressure tubes under N₂, and the mixture was stirred at 40 °C for 12.0 h until *N*,*N*-dimethyl enaminones were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford isocoumarin **3a** in 90% yield (1.1 g).

2.3 Derivatization of isocoumarin 3a.

Isocoumarin 3a (5.0 mmol), NaBH₄ (0.3 mmol) and MeOH (2.0 mL) were charged into

a 10 mL Ace Glass pressure tubes, and the mixture was stirred at room temperature for 3.0 h until isocoumarin were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford the reductive product **4** in 72% yield.

Isocoumarin **3a** (5.0 mmol), benzylamine (0.6 mmol) and DCM (2.0 mL) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 12.0 h until isocoumarin were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford 2-benzylisoquinolin-1(2*H*)-one **5** in 60% yield.

Isocoumarin **3a** (5.0 mmol), NaOH (5.0 mmol%) and MeCN (2.0 mL) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 6.0 h until isocoumarin were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford the carboxylic acid product **6** in 89% yield.

2.4 Isotopic labeling experiments.

N,*N*-Dimethyl enaminone **1a** (2.0 mmol), $[Cp*RhCl_2]_2$ (2.5 mol%), AgOAc (1.0 eq.) and CD₃OD (3.0 eq.) were charged into a 10 mL Ace Glass pressure tubes under N₂, and

the mixture was stirred at 40 °C for 12.0 h. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford **1a-D** by ¹H NMR identification.

2.4 The mechanistic investigation.

With regard to the standard conditions, the intermediate \mathbf{E} in the Scheme 4 was successfully detected by LC-HRMS during the crude reaction mixture.

3. Spectroscopic data.

3,3-Dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3a)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; Yellow solid: 117mg (96%); mp = 143–144 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.04 (d, *J* = 8.3 Hz, 1H, ArH), 8.22 (d, *J* = 7.9 Hz, 1H, ArH), 7.79 (t, *J* = 7.7 Hz, 1H, ArH), 7.52 (t, *J* = 7.6 Hz, 1H, ArH), 2.79 (s, 2H, CH₂), 2.52 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.1, 168.1, 160.9, 135.8, 134.0, 129.7, 128.5, 125.9, 119.8, 110.7, 53.0, 42.6, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₅H₁₄O₃ [(M+H)⁺], 243.1016, found, 243.1008.

9-Methoxy-3,3-dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3b)

V_{Petroleum ether}/V_{Ethyl acetate} = 8:1, R_f = 0.2; Yellow solid: 130mg (96%); mp = 127–128 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.58 (s, 1H, ArH), 8.18 (d, *J* = 8.8 Hz, 1H, ArH), 7.05–7.03 (m, 1H, ArH), 3.94 (s, 3H, ArOCH₃), 2.78 (s, 2H, CH₂), 2.51 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.4, 169.1, 165.6, 160.6, 136.4, 131.8, 117.2, 112.7, 110.4, 108.0, 55.9, 53.0, 42.7, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₆H₁₆O₄ [(M+H)⁺], 273.1121, found, 273.1122.

8-Methoxy-3,3-dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3c)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; White solid: 128mg (94%); mp = 126–127 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.59 (s, 1H, ArH), 8.18 (d, *J* = 8.8 Hz, 1H, ArH), 7.07–7.03 (m, 1H, ArH), 3.95 (s, 3H, ArOCH₃), 2.79 (s, 2H, CH₂), 2.51 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.4, 169.1, 165.6, 160.6, 136.4, 131.8, 117.3, 112.7, 110.5, 108.0, 55.9, 53.0, 42.8, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₆H₁₆O₄ [(M+H)⁺], 273.1121, found, 273.1121.

3,3,9-Trimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3d)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; White solid: 118mg (93%); mp = 135–136 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.85 (s, 1H, ArH), 8.16 (d, *J* = 8.1 Hz, 1H, ArH), 7.34 (d, *J* = 7.9 Hz, 1H, ArH), 2.78 (s, 2H, CH₂), 2.51 (s, 2H, CH₂), 2.50 (s, 3H, ArCH₃), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.3, 168.2, 161.0, 147.2, 134.0, 129.8, 129.7, 126.0, 117.4, 110.7, 53.0, 42.7, 32.1, 28.3, 22.7, 22.7; HRMS (TOF ES+): m/z calcd for C₁₆H₁₆O₃ [(M+H)⁺], 257.1172, found, 257.1176.

3,3,7-Trimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3e)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; White solid: 75mg (58%); mp = 111−112 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.96 (d, *J* = 8.4 Hz, 1H, ArH), 7.64 (t, *J* = 7.9 Hz, 1H, ArH), 7.33 (d, *J* = 7.5 Hz, 1H, ArH), 2.80 (s, 3H, ArCH₃), 2.77 (s, 2H, CH₂), 2.51 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.1, 168.1, 160.0, 143.6, 135.5, 135.0, 131.6, 123.8, 118.3, 110.7, 53.2, 42.6, 32.0, 28.3, 28.3, 24.0; HRMS (TOF ES+): m/z calcd for C₁₆H₁₆O₃ [(M+H)⁺], 257.1172, found, 257.1176.

9-Ethyl-3,3-dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3f)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; Yellow solid: 129mg (96%); mp = 108–109 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.89 (s, 1H, ArH), 8.20 (d, *J* = 7.6 Hz, 1H, ArH), 7.37 (d, *J* = 8.1 Hz, 1H, ArH), 2.81 (d, *J* = 7.3 Hz, 2H, CH₂), 2.79 (s, 2H, CH₂), 2.52 (s, 2H, CH₂), 1.30 (t, *J* = 6.9 Hz, 3H, CH₃), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.3, 168.2, 161.0, 153.3, 134.1, 129.9, 128.7, 125.0, 117.5, 110.7, 53.1, 42.7, 32.1, 29.9, 28.3, 15.4, 15.4; HRMS (TOF ES+): m/z calcd for C₁₇H₁₈O₃ [(M+H)⁺], 271.1329, found, 271.1332.

9-(Dimethylamino)-3,3-dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3g)

V_{Petroleum ether}/V_{Ethyl acetate} = 8:1, R_f = 0.2; Yellow solid: 106mg (74%); mp = 168–169 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.28 (s, 1H, ArH), 8.08 (d, *J* = 9.0 Hz, 1H, ArH), 6.80 (dd, *J* = 9.0, 2.2 Hz, 1H, ArH), 3.13 (s, 6H, CH₃), 2.75 (s, 2H, CH₂), 2.49 (s, 2H, CH₂), 1.15 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.8, 169.0, 161.1, 155.0, 135.4, 131.6, 112.4, 110.6, 107.1, 105.9, 53.2, 42.9, 40.3, 40.3, 32.0, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₇H₁₉NO₃ [(M+H)⁺], 286.1438, found, 286.1440.

9-Chloro-3,3-dimethyl-3,4-dihydro-1H-benzo[c]chromene-1,6(2H)-dione (3h)

 $V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2$; White solid: 122mg (88%); mp = 159–160 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.10 (s, 1H, ArH), 8.20 (d, *J* = 8.5 Hz, 1H, ArH), 7.48 (d, *J* = 8.4 Hz, 1H, ArH), 2.80 (s, 2H, CH₂), 2.52 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 196.7, 169.2, 160.1, 142.9, 135.2, 131.2, 129.1, 125.9, 118.2, 109.9, 52.8, 42.7, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₅H₁₃ClO₃ [(M+H)⁺], 277.0626, found, 277.0628.

9-Fluoro-3,3-dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3i)

V_{Petroleum ether}/V_{Ethyl acetate} = 10:1, R_{*f*} = 0.2; Yellow solid: 120mg (92%); mp = 119–120 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.79 (d, *J* = 10.9 Hz, 1H, ArH), 8.30 (t, *J* = 6 Hz, 1H, ArH), 7.22 (t, *J* = 7.5 Hz, 1H, ArH), 2.80 (s, 2H, CH₂), 2.52 (s, 2H, CH₂), 1.18 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 196.8, 169.3, 167.4 (C–F, *J* = 256.1 Hz), 159.9, 136.9 (C–F, *J* = 12.2 Hz), 132.8 (C–F, *J* = 10.5 Hz), 116.8 (C–F, *J* = 23.6 Hz), 116.3 (C–F, *J* = 2.3 Hz), 112.6 (C–F, *J* = 26.1 Hz), 110.1 (C–F, *J* = 3 Hz), 52.8, 42.6, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₅H₁₃FO₃ [(M+H)⁺], 261.0921, found, 261.0924.

9-Bromo-3,3-dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3j)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; White solid: 148mg (92%); mp = 149–150 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.28 (s, 1H, ArH), 8.11 (d, *J* = 8.4 Hz, 1H, ArH), 7.67–7.63 (m, 1H, ArH), 2.80 (s, 2H, CH₂), 2.52 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 196.7, 169.2, 160.3, 135.2, 132.0, 131.9, 131.1, 128.9, 118.5, 109.8, 52.8, 42.7, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₅H₁₃BrO₃ [(M+H)⁺], 321.0121, found, 321.0123.

3,3-Dimethyl-1,6-dioxo-2,3,4,6-tetrahydro-1*H*-benzo[*c*]chromen-9-yl acetate (3k)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.2; Yellow solid: 112mg (74%); mp = 229–230 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.58 (s, 1H, ArH), 8.17 (d, *J* = 8.8 Hz, 1H, ArH), 7.04 (dd, *J* = 8.9, 2.6 Hz, 1H, ArH), 3.94 (s, 3H, CH₃), 2.78 (s, 2H, CH₂), 2.51 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.4, 169.1, 165.6, 160.6, 136.4, 131.8, 117.2, 117.2, 112.7, 110.4, 108.0, 55.9, 53.0, 42.7, 32.1, 28.2, 28.2; HRMS (TOF ES+): m/z calcd for C₁₇H₁₆O₅ [(M+H)⁺], 301.1071, found, 301.1075.

3,3-Dimethyl-9-nitro-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3l)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; White solid: 125mg (87%); mp = 170–171 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.94 (s, 1H, ArH), 8.45 (d, *J* = 8.7 Hz, 1H, ArH), 8.30–8.28 (m, 1H, ArH), 2.85 (s, 2H, CH₂), 2.57 (s, 2H, CH₂), 1.20 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 196.3, 169.8, 159.2, 152.3, 135.3, 131.4, 123.9, 122.6, 121.6, 109.8, 52.6, 42.6, 32.2, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₅H₁₃NO₅ [(M+H)⁺], 288.0866, found, 288.0870.

3,3-Dimethyl-9-(trifluoromethyl)-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione(3m)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; Yellow solid: 125mg (84%); mp = 168–169 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.42 (s, 1H, ArH), 8.40 (d, *J* = 8.3 Hz, 1H, ArH), 7.76 (d, *J* = 8.2 Hz, 1H, ArH), 2.83 (s, 2H CH₂), 2.55 (s, 2H, CH₂), 1.19 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 196.7, 169.2, 159.8, 137.0 (*J* = 32.7 Hz), 134.5, 130.5, 124.9 (*J* = 3,4 Hz), 123.5 (*J* = 3.9 Hz), 122.6, 122.3, 110.0, 52.8, 42.6, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₆H₁₃F₃O₃ [(M+H)⁺], 311.0890, found, 311.0888.

3,3-Dimethyl-9-(methylsulfonyl)-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3n)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.2; White solid: 147 mg (91%); mp = 244–245 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.69 (s, 1H, ArH), 8.47 (d, *J* = 8.3 Hz, 1H, ArH), 8.09–8.06 (m, 1H, ArH), 3.16 (s, 3H, Me), 2.85 (s, 2H, CH₂), 2.57 (s, 2H, CH₂), 1.20 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 196.3, 169.5, 159.3, 146.8, 134.8, 131.0, 126.1, 125.5, 123.3, 109.8, 52.5, 44.0, 42.5, 32.1, 28.1, 28.1; HRMS (TOF ES+): m/z calcd for C₁₆H₁₆O₅S [(M+H)⁺], 321.0791, found, 321.0799.

3,3-Dimethyl-3,4-dihydro-1*H*-[1,3]dioxolo[4',5':4,5]benzo[1,2-*c*]chromene-1,6(2*H*)-dione (30)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, $R_f = 0.2$; Yellow solid: 109mg (76%); mp = 164–165 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.16 (d, J = 8.7 Hz, 1H, ArH), 7.18 (d, J = 8.7 Hz, 1H, ArH), 6.18 (s, 2H, , CH₂), 3.13 (s, 2H, CH₂), 2.65 (s, 2H, CH₂), 1.19 (s, 6H, Me); ¹³C NMR (150 MHz, CDCl₃) δ = 195.9, 168.6, 151.4, 144.4, 142.4, 121.5, 120.4, 120.1, 119.2, 110.2, 101.9, 52.4, 39.5, 34.0, 29.0, 29.0; HRMS (TOF ES+): m/z calcd for C₁₆H₁₄O₅ [(M+H)⁺], 287.0914, found, 287.0916.

3,3-Dimethyl-3,4-dihydro-1*H*-naphtho[2,3-*c*]chromene-1,6(2*H*)-dione (3p)

V_{Petroleum ether}/V_{Ethyl acetate} = 8:1, R_f = 0.2; Yellow solid: 124mg (85%); mp = 188–189 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.53 (s, 1H, ArH), 8.91 (s, 1H, ArH), 8.01 (dd, *J* = 17.0, 8.3 Hz, 2H, ArH), 7.66 (t, *J* = 7.5 Hz, 1H, ArH), 7.58 (t, *J* = 7.5 Hz, 1H, ArH), 2.82 (s, 2H, CH₂), 2.57 (s, 2H, CH₂), 1.21 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.5, 167.0, 161.2, 137.0, 132.2, 131.9, 129.7, 129.4, 129.2, 127.9, 127.4, 125.5, 118.1, 110.7, 53.0, 42.7, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₉H₁₆O₃ [(M+H)⁺], 293.1172, found, 293.1174.

3,3-Dimethyl-9-phenyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3q)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; Yellow solid: 144mg (91%); mp = 153–154 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.34 (s, 1H, ArH), 8.34 (d, *J* = 8.3 Hz, 1H, ArH), 7.77 (d, *J* = 9.6 Hz, 1H, ArH), 7.72 (d, *J* = 7.3 Hz, 2H, ArH), 7.50 (t, *J* = 7.5 Hz, 2H, ArH), 7.43 (t, *J* = 7.3 Hz, 1H, ArH), 2.81 (s, 2H, CH₂), 2.54 (s, 2H, CH₂), 1.19 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.2, 168.5, 160.8, 148.4, 139.7, 134.4, 130.3, 129.2, 129.2, 128.9, 127.8, 127.8, 127.3, 124.3, 118.5, 110.7, 53.0, 42.7, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₂₁H₁₈O₃ [(M+H)⁺], 319.1329, found, 319.1328.

3,3-Dimethyl-9-(piperazin-1-yl)-3,4-dihydro-1H-benzo[c]chromene-1,6(2H)-dione (3r)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.2; Yellow solid: 128mg (79%); mp = 176–177 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.57 (s, 1H, ArH), 8.16–8.13 (m, H, ArH), 7.02 (dd, *J* = 9.1, 2.5 Hz, 1H, ArH), 3.72 (t, *J* = 5.2 Hz, 2H, CH₂), 3.58–3.54 (m, 2H, CH₂), 3.54–3.50 (m, 2H, CH₂), 3.48 (t, *J* = 5.4 Hz, 2H, CH₂), 2.77 (s, 2H, CH₂), 2.50 (s, 2H, CH₂), 1.16 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.8, 169.4, 161.0, 160.5, 155.2, 135.8, 131.7, 115.2, 110.4, 109.3, 53.1, 48.2, 47.1, 45.1, 42.9, 39.8, 32.1, 28.2, 28.2; HRMS (TOF ES+): m/z calcd for C₁₉H₂₂N₂O₃ [(M+H)⁺], 327.1703, found, 327.1707.

9-(Dimethylamino)-3,3-dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3s)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.2; White solid: 73mg (50%); mp = 223–224 °C; ¹H NMR (600 MHz, CDCl₃) δ = 10.26 (s, 1H, NH), 8.15 (d, *J* = 7.7 Hz, 1H, ArH), 7.52 (d, *J* = 7.9 Hz, 1H, ArH), 7.42–7.34 (m, 2H, ArH), 2.86 (s, 2H, CH₂), 2.55 (s, 2H, CH₂), 1.21 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.2, 172.4, 157.8, 141.9, 137.1, 125.3, 123.6, 123.2, 121.2, 112.0, 106.4, 99.4, 50.9, 42.0, 33.3, 28.5, 28.5; HRMS (TOF ES+): m/z calcd for C₁₇H₁₅NO₃ [(M+H)⁺], 282.1125, found, 282.1131.

7,7-Dimethyl-7,8-dihydro-4*H*-thieno[2,3-*c*]chromene-4,9(6*H*)-dione (3t)

V_{Petroleum ether}/V_{Ethyl acetate} = 10:1, R_{*f*} = 0.2; White solid: 107mg (87%); mp = 128–129 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.22 (d, *J* = 5.2 Hz, 1H, C=CH), 7.91 (d, *J* = 5.2 Hz, 1H, C=CH), 2.82 (s, 2H, CH₂), 2.50 (s, 2H, CH₂), 1.18 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.3, 169.5, 157.0, 143.6, 138.0, 126.2, 123.0, 111.6, 51.6, 41.9, 32.6, 28.4, 28.4; HRMS (TOF ES+): m/z calcd for C₁₃H₁₂O₃S [(M+H)⁺], 249.0580, found, 249.0581.

7,7-Dimethyl-7,8-dihydro-4H-furo[2,3-c]chromene-4,9(6H)-dione (3u)

 $V_{Petroleum ether}/V_{Ethyl acetate} = 10:1, R_f = 0.2; Yellow solid: 89mg (77%); mp = 145–146 °C; ¹H NMR (600 MHz, CDCl₃) <math>\delta$ = 7.86 (s, 1H, C=CH), 7.37 (d, *J* = 1.9 Hz, 1H, C=CH), 2.79 (s, 2H, CH₂), 2.48 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.3, 169.2, 152.2, 151.5, 136.9, 132.6, 110.3, 109.3, 51.1, 41.7, 33.0, 28.4, 28.4; HRMS (TOF ES+): m/z calcd for C₁₃H₁₂O₄ [(M+Na)⁺], 255.0628, found, 255.0628.

3-Methyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3x)

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_{*f*} = 0.2; White solid: 108mg (95%); mp = 123–124 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.05 (d, *J* = 8.3 Hz, 1H, ArH), 8.28 (dd, *J* = 8.0, 1.5 Hz, 1H, ArH), 7.81–7.76 (m, 1H, ArH), 7.53 (t, *J* = 7.5 Hz, 1H, ArH), 2.97–2.91 (m, 1H, C-CH), 2.74–2.63 (m, 2H, CH₂), 2.48–2.34 (m, 2H, CH₂), 1.18 (d, *J* = 6.4 Hz, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.1, 169.1, 160.7, 135.8, 134.1, 129.7, 128.6, 126.0, 119.9, 111.3, 47.3, 37.0, 27.8, 20.9; HRMS (TOF ES+): m/z calcd for C₁₄H₁₄O₃ [(M+H)⁺], 229.0859, found, 229.0863.

2,2-Dimethyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3y)

V V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; White solid: 115mg (95%); mp = 142–143 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.04 (d, *J* = 8.3 Hz, 1H, ArH), 8.28 (d, *J* = 7.9 Hz, 1H, ArH), 7.79 (t, *J* = 7.7 Hz, 1H, ArH), 7.53 (t, *J* = 7.6 Hz, 1H, ArH), 2.80 (s, 2H, CH₂), 2.52 (s, 2H, CH₂), 1.17 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.2, 168.1, 160.9, 135.8, 134.0, 129.7, 128.5, 125.9, 119.9, 110.7, 53.0, 42.6, 32.1, 28.3, 28.3; HRMS (TOF ES+): m/z calcd for C₁₄H₁₄O₃ [(M+H)⁺], 243.1016, found, 243.1022.

3-Phenyl-3,4-dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3z)

V_{Petroleum ether}/V_{Ethyl acetate} = 10:1, R_f = 0.2; Yellow solid: 124mg (78%); mp = 118–119 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.10 (d, *J* = 8.3 Hz, 1H, ArH), 8.31 (d, *J* = 7.9 Hz, 1H, ArH), 7.82 (t, *J* = 7.7 Hz, 1H, ArH), 7.56 (t, *J* = 7.6 Hz, 1H, ArH), 7.40 (t, *J* = 7.5 Hz, 2H, ArH), 7.31 (dd, *J* = 12.5, 7.4 Hz, 3H, ArH), 3.61–3.54 (m, 1H, C-CH), 3.23–3.12 (m, 2H, CH₂), 2.98–2.87 (m, 2H, CH₂); ¹³C NMR (150 MHz, CDCl₃) δ = 196.3, 168.7, 160.6, 141.5, 135.9, 133.9, 129.8, 129.2, 129.2, 128.8, 127.7, 126.7, 126.1, 119.9, 111.5, 46.0, 38.1, 36.5; HRMS (TOF ES+): m/z calcd for C₁₉H₁₄O₃ [(M+H)⁺], 291.1016, found, 291.1019.

3,4-Dihydro-1*H*-benzo[*c*]chromene-1,6(2*H*)-dione (3a')

V_{Petroleum ether}/V_{Ethyl acetate} = 12:1, R_f = 0.2; Yellow solid: 101mg (95%); mp = 165–166 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.04 (d, *J* = 8.3 Hz, 1H, ArH), 8.27 (d, *J* = 7.6 Hz, 1H, ArH), 7.80–7.77 (m, 1H, ArH), 7.52 (t, *J* = 7.6 Hz, 1H, ArH), 2.93 (t, *J* = 6.3 Hz, 2H, CH₂), 2.65 (t, *J* = 6.5 Hz, 2H, CH₂), 2.20–2.15 (m, 2H, CH₂); ¹³C NMR (150 MHz, CDCl₃) δ = 197.1, 169.6, 160.6, 135.8, 134.1, 129.7, 128.5, 126.2, 119.9, 111.7, 39.1, 29.1, 20.1; HRMS (TOF ES+): m/z calcd for C₁₃H₁₀O₃ [(M+H)⁺], 215.0703, found, 215.0705.

2,4-Dimethyl-1*H*-isochromeno[3,4-*d*]pyrimidine-1,3,6(2*H*,4*H*)-trione (3b')

V_{Petroleum ether}/V_{Ethyl acetate} = 2:1, R_f = 0.2; Yellow solid: 82mg (63%); mp = 180–181 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.88 (d, *J* = 7.0 Hz, 1H, ArH), 7.72 (s, 1H, ArH), 7.53–7.45 (m, 1H, ArH), 7.18 (d, *J* = 7.3 Hz, 1H, ArH), 3.42 (s, 3H, CH₃), 2.98 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 190.6, 169.1, 151.6, 148.3, 144.2, 138.2, 133.0, 130.4, 125.0, 120.9, 102.9, 30.0, 30.0; HRMS (TOF ES+): m/z calcd for C₁₉H₁₄O₃ [(M+H)⁺], 259.0713, found, 259.0713.

2,3-Dihydrocyclopenta[c]isochromene-1,5-dione (3c')

V V_{Petroleum ether}/V_{Ethyl acetate} = 10:1, R_f = 0.2; White solid: 93mg (93%); mp = 181–182 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.49 (d, *J* = 7.9 Hz, 1H, ArH), 8.27 (d, *J* = 7.9 Hz, 1H, ArH), 7.81 (t, *J* = 7.6 Hz, 1H, ArH), 7.57 (t, *J* = 7.7 Hz, 1H, ArH), 3.05–3.01 (m, 2H, CH₂), 2.77–2.74 (m, 2H, CH₂); ¹³C NMR (150 MHz, CDCl₃) δ = 200.6, 180.6, 161.3, 136.0, 132,0, 130.6, 129.2, 123.4, 118.7, 114.7, 34.7, 25.9; HRMS (TOF ES+): m/z calcd for C₁₂H₈O₃ [(M+H)⁺], 201.0546, found, 201.5055.

1-Hydroxy-3,3-dimethyl-1,2,3,4-tetrahydro-6*H*-benzo[*c*]chromen-6-one (4)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.2; White solid: 87mg (71%); mp = 100–101 °C; ¹H NMR (600 MHz, CDCl₃) δ = 8.26 (d, *J* = 7.9 Hz, 1H, ArH), 7.92 (d, *J* = 8.1 Hz, 1H, ArH), 7.74 (t, *J* = 7.7 Hz, 1H, ArH), 7.46 (t, *J* = 7.6 Hz, 1H, ArH), 5.04 (s, 1H, OH), 2.48 (d, *J* = 17.6 Hz, 1H, CH₂), 2.35 (d, *J* = 17.6 Hz, 1H, CH₂), 2.03 (dd, *J* = 13.8, 5.8 Hz, 1H, C-CH), 1.82–1.73 (m, 2H, CH₂), 1.19 (s, 3H, CH₃), 1.05 (s, 3H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 162.7, 153.8, 136.8, 134.9, 129.8, 127.7, 124.0, 120.8, 110.9, 65.0, 45.6, 41.5, 30.6, 29.3, 28.5; HRMS (TOF ES+): m/z calcd for C₁₅H₁₆O₃ [(M+H)⁺], 245.1172, found, 245.1171.

5-Benzyl-3,3-dimethyl-3,4-dihydrophenanthridine-1,6(2H,5H)-dione (5)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.2; White solid: 132mg (80%); mp = 125–126 °C; ¹H NMR (600 MHz, CDCl₃) δ = 9.29 (d, *J* = 8.47 Hz, 1H, ArH), 8.48 (d, *J* = 7.9 Hz, 1H, ArH), 7.77 (t, *J* = 7.7 Hz, 1H, ArH), 7.53 (t, *J* = 7.6 Hz, 1H, ArH), 7.33 (t, *J* = 7.4 Hz, 2H, ArH), 7.28 (s, 1H, ArH), 7.12 (d, *J* = 7.9 Hz, 2H, ArH), 5.52 (s, 2H, CH₂), 2.82 (s, 2H, CH₂), 2.48 (s, 2H, CH₂), 1.01 (s, 6H, CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 197.3, 163.2, 152.7, 136.2, 134.0, 133.9, 129.2, 129.2, 128.2, 127.7, 127.3, 126.2, 125.2, 125.9, 124.1, 111.1, 52.4, 47.3, 42.1, 32.2, 28.1, 28.1; HRMS (TOF ES+): m/z calcd for C₂₂H₂₁NO₂ [(M+H)⁺], 332.1645, found, 332.1643.

6'-Hydroxy-4',4'-dimethyl-2'-oxo-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-carboxylic acid (6)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.2; White solid: 116mg (89%); mp = 176–177 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.41 (d, J = 8.3 Hz, 1H, ArH), 7.22 (t, J = 7.5 Hz, 1H, ArH), 7.14 (d, J = 6.5 Hz, 1H, ArH), 6.94 (d, *J* = 6.9 Hz, 1H, ArH), 2.19 (s, 2H, CH₂), 2.13 (s, 2H, CH₂), 1.04 (s, 6H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆) δ = 197.6, 168.9, 160.4, 135.1, 132.9, 132.8, 130.9, 129.3, 126.5, 115.8, 52.3, 41.7, 31.9, 29.0, 27.8; HRMS (TOF ES+): m/z calcd for C₁₅H₁₆O₄ [(M+H)⁺], 261.1121, found, 261.1126.

4. X-ray Structure and Data³ of 3b (CCDC 2209204).

Tuble 51 Crystal data and structure refinement for 55.	
Empirical formula	$C_{16}H_{16}O_4$
Formula weight	272.29
Temperature	293(2) K
Wavelength	1.54184 Å
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 9.6765(5) A alpha = 90 deg.
	b = 13.7501(6) A beta = 105.149(5) deg.
	c = 10.5137(5) A gamma = 90 deg.
Volume	1350.27(11) A^3
Z, Calculated density	4, 1.339 Mg/m^3
Absorption coefficient	0.789 mm^-1
F(000)	576
Crystal size	0.230 x 0.220 x 0.200 mm
Theta range for data collection	5.418 to 67.240 deg.
Limiting indices	-11<=h<=11, -16<=k<=15, -12<=l<=9
Completeness to theta $= 67.240$	99.4%
Reflections collected / unique	4661 / 2415 [R(int) = 0.0249]
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	2415 / 0 / 184
Goodness-of-fit on F^2	1.022
Final R indices [I>2sigma(I)]	R1 = 0.0456, wR2 = 0.1194
R indices (all data)	R1 = 0.0554, wR2 = 0.1286
Extinction coefficient	n/a
Largest diff. peak and hole	0.153 and -0.194 e.A^-3

Table S1Crystal data and structure refinement for 3b.

5. ¹H NMR and ¹³C NMR spectra for spectroscopic data.

Figure S6. ¹H NMR (600 MHz, $CDCl_3$) spectra of compound **3c**

Figure S11. ¹³C NMR (150 MHz, CDCl₃) spectra of compound **3e**

Figure S28. ¹H NMR (600 MHz, CDCl₃) spectra of compound 3n

Figure S43. ¹³C NMR (150 MHz, CDCl₃) spectra of compound **3u**

223323844555555288333

ZMS-101.1.fid

28222322823282328

NNN

00 00

21534 22334 22354 22354 215 215 215 215 215 215 215 215

ZMS-95.1.fid

ZMS-96.1.fid

00 00

6. References and notes.

- (*a*) Tingoli, M.; Mazzella, M.; Panunzi, B.; Tuzi, A. L-Proline-catalyzed activation of methyl ketones or active methylene compounds and DMF-DMA for syntheses of (2E)-3-dimethylamino-2-propen-1-ones. *Eur. J. Org. Chem.* 2011, 399. (*b*) Das, B.; enkateswarlu, K.; Majhi, V.; Reddy, M. R.; Reddy, K. N.; Yerra Rao, K.; Ravikumar, K.; Sridhar, B. Highly efficient, mild and chemo- and stereoselective synthesis of enaminones and enamino esters using silica supported perchloric acid under solvent-free conditions. *J. Mol. Catal. A: Chem.* 2006, 246, 276. (c) Liu, Y.; Zhou, R. Wan, J.-P. Water-promoted synthesis of enaminones. Mechanism investigation and application in multicomponent reactions. *Synth. Commun.* 2013, 43, 2475.
- (a) Moriarty, R. M.; Tyagi, S.; Ivanov, D.; Constantinescu, M. The mechanism of 1,4 alkyl group migration in hypervalent halonium ylides: the stereochemical course. J. Am. Chem. Soc. 2008, 130, 7564. (b) Jiang, Y.; Li, P.; Zhao, J.; Liu, B.; Li, X. Iodonium ylides as carbene precursors in Rh(III)-catalyzed C–H activation. Org. Lett. 2020, 22, 7475.
- CCDC 2209204 contain the supplementary crystallographic data for compound **3b**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif.</u>