Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

## Electrochemical water oxidation using a stable water-soluble mononuclear manganese clathrochelate

Shenke Zheng,<sup>a\*</sup> Xiangming Liang,<sup>b\*</sup> Chang Dai,<sup>a</sup> Xueli Yang,<sup>a</sup> Ziyang Li,<sup>a</sup> Yilong Lai,<sup>a</sup> Li Hong,<sup>a</sup> Junqi Lin<sup>a\*</sup>

<sup>a</sup> Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China. E-mail: shenkezheng@163.com, linjunqi@hgnu.edu.cn

<sup>b</sup> School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.

Email: liangxm@nxmu.edu.cn

| Identification code                                 | $[Na_2(H_2O)_3Mn^{IV}(L-6H)]\cdot 4H_2O$                            |                               |
|-----------------------------------------------------|---------------------------------------------------------------------|-------------------------------|
| Empirical formula                                   | $C_{12}H_{26}MnN_{12}Na_2O_{13}$                                    |                               |
| Formula weight                                      | 647.37                                                              |                               |
| Temperature                                         | 296(2) K                                                            |                               |
| Wavelength                                          | 0.71073 Å                                                           |                               |
| Crystal system                                      | Triclinic                                                           |                               |
| Space group                                         | P-1                                                                 |                               |
| Unit cell dimensions                                | a = 9.9851(11) Å                                                    | $\alpha = 105.913(4)^{\circ}$ |
|                                                     | b = 11.2937(13) Å                                                   | $\beta = 93.377(4)^{\circ}$   |
|                                                     | c = 11.7998(13) Å                                                   | $\gamma = 105.795(4)^{\circ}$ |
| Volume                                              | 1218.5(2) Å <sup>3</sup>                                            |                               |
| Z                                                   | 2                                                                   |                               |
| Density (calculated)                                | 1.765 Mg/m <sup>3</sup>                                             |                               |
| Absorption coefficient                              | 0.667 mm <sup>-1</sup>                                              |                               |
| <i>F</i> (000)                                      | 666                                                                 |                               |
| Crystal size                                        | $0.230 \times 0.220 \times 0.180 \text{ mm}^3$                      |                               |
| Theta range for data collection                     | 1.966 to 25.065°.                                                   |                               |
| Index ranges                                        | -11<=h<=11, -13<=k<=13, -14<=l<=14                                  |                               |
| Reflections collected                               | 44844                                                               |                               |
| Independent reflections                             | 4303 [R(int) = 0.0681]                                              |                               |
| Completeness to theta = $25.065^{\circ}$            | 99.8 %                                                              |                               |
| Absorption correction                               | Semi-empirical from equivalents                                     |                               |
| Max. and min. transmission                          | 0.7452 and 0.6448                                                   |                               |
| Refinement method                                   | Full-matrix least-squares on F <sup>2</sup>                         |                               |
| Data / restraints / parameters                      | 4303 / 0 / 379                                                      |                               |
| Goodness-of-fit on F <sup>2</sup>                   | 1.055                                                               |                               |
| Final R indices [I>2sigma(I)]                       | $R_1 = 0.0301, wR_2 = 0.0799$                                       |                               |
| R indices (all data)<br>Largest diff. peak and hole | $R_1 = 0.0339, wR_2 = 0.0823$<br>0.375 and -0.267 e.Å <sup>-3</sup> |                               |

 Table S1 Crystal data and structure refinement for 1.

 $\overline{R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, wR_2} = [\Sigma (|F_o|^2 - |F_c|^2)^2 / \Sigma (F_{o2})]^{1/2}$ 



Fig. S1 Infrared spectrum of complex 1.



**Fig. S2** The UV-vis absorption of complex **1** in phosphate buffer solution (PBS) at pH 8.0 (a), the linear relationship between absorption at 400 nm (b), 507 nm (c), and 658 nm (d) and the concentration of complex **1**.



Fig. S3 Consecutive CV scan of 0.2 mM of complex 1 in 0.1 M PBS at pH 8.0.



Fig. S4 The Cyclic voltammograms of the manganese clathrochelate (0.05 mM) in anhydrous dimethylformamide (0.1 M tetrabutylammonium hexafluorophosphate as electrolyte) at 100 mV/s with increasing amounts of  $H_2O$  (GC working electrode, 0.071 cm<sup>2</sup>).



Fig. S5 Controlled CV experiment that indicating the oxygen generation at the catalytic current. 0.2 mM of complex 1 in 0.1 M phosphate buffer solution at pH 8.0, scan rate = 100 mV/s.



Fig. S6 CV scan of 0.2 mM of complex 1 in 0.1 M PBS at various pH.



Fig. S7 The relationship between the onset potential for water oxidation mediated by complex 1 and the pH value of PBS electrolyte.



Fig. S8 CV curves of complex 1 at various concentration in 0.1 M PBS at pH 8.0.



**Fig. S9** The dependence of anodic peak current density  $j_p$  (a) and catalytic wave current density  $j_{cat}$  (b) on the concentration of complex 1 ([1]) in PBS at pH 8.0.



**Fig. S10** CV curves of 0.2 mM of complex **1** at various scan rate, 0.1 M PBS at pH 8.0 is used as electrolyte.



**Fig. S11** The dependence of anodic peak current density  $j_p$  (a) and  $j_{cat}/j_p$  (b) on the value of  $v^{-1/2}$  (*v* is the scan rate), 0.1 M PBS at pH 8.0 is used as electrolyte.



**Fig. S12** Faradaic efficiency of  $O_2$  evolution for complex 1 under electrolysis of 14400 s at 1.42 V (vs. NHE) in 0.1 M PBS at pH 8.0.



**Fig. S13** The absorption spectra of complex **1** before and after controlled potential electrolysis at 1.42 V vs. NHE for 4 h, 0.1 M PBS at pH 8.0 is used as electrolyte.



**Fig. S14** SEM images of the surface of ITO electrode before (top) and after (bottom) 4 h CPE experiments (1.42 V vs. NHE) of 0.2 mM of **1** in 0.1 M PBS at pH 8.0.



**Fig. S15** EDX analysis of the surface of ITO electrode before (top) and after (bottom) 4 h CPE experiments of 0.2 mM of **1** in 0.1 M PBS at pH 8.0.



**Fig. S16** Three times CPE test of 0.2 mM of complex **1** at 1.42 V vs. NHE using 0.1 M PBS at pH 8.0 as electrolyte and ITO electrode as working electrode. For each CPE test, the solution pH was adjusted back to its original pH in the initial time.