Synthesis of Fe₃O₄/ZrO₂/CuO magnetic nanohybrid and its applications in reducing chromium(VI) and degrading methylene blue under sunlight

Mohammad Amin Arayesh, Ali Hossein Kianfar¹, Gholamhossein Mohammadnezhad

Department of Chemistry, Isfahan University of Technology, Isfahan, 84156/83111

Materials and Method

Iron(III) chloride (FeCl₃.6H₂O), iron(II) chloride (FeCl₂.4H₂O), zirconyl chloride (ZrOCl₂.8H₂O), copper(II) nitrate (Cu(NO₃)₂), sodium hydroxide (NaOH), methylene blue (MB), hydrogen peroxide (H₂O₂), potassium dichromate (K₂Cr₂O₇), sodium dithionite (Na₂S₂O₄), ethanol (EtOH) and deionized water (DI) used to prepare Fe₃O₄/ZrO₂/CuO nanoparticles were obtained from Merck and Sigma Aldrich Chemical Companies.

Material characterization

Field emission scanning electron microscopy (FE-SEM, FEI-Quanta 450 FEG) and transmission electron microscopy (TEM, Philips EM 208) were used to study the morphology and particle size of Fe₃O₄/ZrO₂/CuO. X-ray diffraction (XRD, Philips X'PERT MPD) with an X-ray wavelength of 1.54 Å (Cu K α radiation source) was used to investigate the crystal phases of the Fe₃O₄/ZrO₂/CuO nanoparticles. A JASCO V-670 UV-Vis spectrophotometer (Japan) was used to record the diffuse reflectance spectra (DRS) in the 200-900 nm range. The absorbance values were used to determine the concentration of the dye solutions. A Jasco Model 460 plus FT-IR spectrophotometer was used to record the Fourier transform infrared spectra (FT-IR). For the determination of Cu content of Fe₃O₄/ZrO₂/CuO nanocomposite, inductively coupled plasma (ICP) analysis (Optima 7300DV ICP-OES, Perkin Elmer) was used. The Surface and valence states were characterized using X-ray photoelectron spectroscopy (XPS, K-Alpha+, Thermofisher Scientific). Magnetic properties of Fe₃O₄/ZrO₂/CuO nanocomposite were carried out in a vibrating sample magnetometer (VSM,

¹ Corresponding author, Tel: +983133913251 ; Fax : +983133913251

Email: akianfar@iut.ac.ir

LBKFB) at room temperature. The surface area of the nanocomposite was determined via Barrett-Emmett-Teller (BET) method by BELSORP- mini 2 instrument.

Figure S1. The standard cards of Fe₃O₄, ZrO₂ and CuO

Figure S2. The FE-SEM images of Fe₃O₄ nanoparticles

Figure S3. The EDX spectra of a) Fe₃O₄ b) Fe₃O₄/ZrO₂ c) Fe₃O₄/ZrO₂/CuO

Figure S4. The PL spectra of Fe_3O_4/ZrO_2 and $Fe_3O_4/ZrO_2/CuO$

Figure S5. The DRS spectra and Kubelka-Munk plots of Fe₃O₄/ZrO₂ and Fe₃O₄/ZrO₂/CuO.

Figure S6. The FT-IR spectra of Fe $_3O_4$, Fe $_3O_4$ /ZrO $_2$ and Fe $_3O_4$ /ZrO $_2$ /CuO

Figure S7. a) The XPS spectrum of O 1s, C 1s, Cu 2p, Zr 3d and Fe 2p. b) high resolution spectra of C1s

Figure S8. The liquid chromatograms of photodegradation of MB at different retention time.

Figure S9. adsorption of Cr(VI) by Fe₃O₄/ZrO₂/CuO

Figure S10. UV- Vis spectroscopy of Cr(VI) reduction (pH = 6), a) in presence of reducer agent b) in absence of reducing

Figure S11. Reusability of photoreduction of Cr(VI) with Fe₃O₄/ZrO₂/CuO

Table S1. The amount of Ms, Mr, and Hc for Fe₃O₄, Fe₃O₄/ZrO₂ and Fe₃O₄/ZrO₂/CuO

Magnetic compound	Ms	Mr	Hc
Fe ₃ O ₄	49.30	1.23	12.23
Fe ₃ O ₄ /ZrO ₂	39.55	0.23	-2.05
Fe ₃ O ₄ /ZrO ₂ /CuO	36.02	0.21	-2.2

Table.S2 Determined of photocatalyst dosage

mg of catalyst	1	3	5
Time (min)	25	23	19